In [12], authors introduced some geometric concepts such as (almost) product, para-complex, para-Hermitian and para-Kähler structures for hom-Lie algebras and they presented an example of a 4-dimensional hom-Lie algebra, which contains these concepts. In this paper, we classify two-dimensional hom-Lie algebras containing these structures. In particular, we show that there doesn't exist para-Kahler proper hom-Lie algebra of dimension 2.
1. F. Ammar, Z. Ejbehi and A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21(4) (2011), 813-836.
2. A. Andrada, Complex product structures on 6-dimensional nilpotent Lie algebras, Forum Mathematicum, 20(2) (2008), 285-315.
3. A. Andrada, M.L. Barberis and I. Dotti, Classification of abelian complex structures on 6-dimensional Lie algebras, J. London Math. Soc., 83 (2011), 232-255.
4. A. Andrada, M.L. Barberis and I. Dotti, Abelian Hermitian geometry, Diff. Geom. Appl., 30(5) (2012), 509-519.
5. S. Benayadi, M. Boucetta On para-K¨ahler and hyper-para-K¨ahler Lie algebras, J. Algebra, 436 (2015), 61-101.
6. G. Calvaruso and A. Fino, Five-dimensional K-contact Lie algebras, Monatshefte f¨ur Mathematik, 167(1) (2012), 35-59.
7. Y. Cheng and Y. Su, (Co)homology and universal central extension of Hom-Leibniz algebras, Acta Math. Sin. (Engl. Ser.), 27(5) (2011), 813-830.
8. J. Hartwig, D. Larsson and S. Silvestrov, Deformations of Lie algebras using σderivations, J. Algebra, 295 (2006), 314-361.
9. N. Hu, q-Witt algebras, q-Lie algebras, q-holomorph structure and representations, Algebra Colloq., 6(1) (1999), 51-70.
10. S. Ivanov, S, Zamkovoy, Parahermitian and paraquaternionic manifolds, Differl. Geom. Appl., 23(2) (2005), 205-234.
11. D. Larsson and S. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocyclelike identities, J. Algebra, 288 (2005), 321-344.
12. E. Peyghan and L. Nourmohammadifar, Para-K¨ahler hom-Lie algebras, Journal of Algebra and Its Applications, 18(3) (2019), 1950044.
13. Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theor., 15 (2012), 1081-1098.
14. Y. Sheng and C. Bai, A new approach to hom-Lie bialgebras, J. Algebra, 399 (2014), 232-250.
15. D. Yau, Hom-algebras and homology, J. Lie Theory, 19 (2009), 409-421.
Peyghan, E., & Nourmohammadifar, L. (2022). Para-Kähler hom-Lie algebras of dimension 2. Journal of Finsler Geometry and its Applications, 3(2), 119-138. doi: 10.22098/jfga.2022.11916.1079
MLA
Esmaeil Peyghan; Leila Nourmohammadifar. "Para-Kähler hom-Lie algebras of dimension 2", Journal of Finsler Geometry and its Applications, 3, 2, 2022, 119-138. doi: 10.22098/jfga.2022.11916.1079
HARVARD
Peyghan, E., Nourmohammadifar, L. (2022). 'Para-Kähler hom-Lie algebras of dimension 2', Journal of Finsler Geometry and its Applications, 3(2), pp. 119-138. doi: 10.22098/jfga.2022.11916.1079
VANCOUVER
Peyghan, E., Nourmohammadifar, L. Para-Kähler hom-Lie algebras of dimension 2. Journal of Finsler Geometry and its Applications, 2022; 3(2): 119-138. doi: 10.22098/jfga.2022.11916.1079