Para-Kähler hom-Lie algebras of dimension 2

\author{
Esmaeil Peyghan ${ }^{a *}$ and Leila Nourmohammadifar ${ }^{a}$
 ${ }^{a}$ Department of Mathematics, Faculty of Science, Arak University
 Arak, 38156-8-8349, Iran.
 ```
E-mail: e-peyghan@araku.ac.ir
 E-mail: l.nourmohammadi@gmail.com

```
}

\begin{abstract}
In [12], authors introduced some geometric concepts such as (almost) product, para-complex, para-Hermitian and para-Kähler structures for hom-Lie algebras and they presented an example of a 4-dimensional hom-Lie algebra, which contains these concepts. In this paper, we classify two-dimensional hom-Lie algebras containing these structures. In particular, we show that there doesn't exist para-Kähler proper hom-Lie algebra of dimension 2.
\end{abstract}

Keywords: Almost para-Hermitian structure, hom-Levi-Civita product, paraKähler hom-Lie algebra.

\section*{1. Introduction}

Recently, hom-structures including hom-algebras, hom-Lie algebras, homcoalgebras, hom-bialgebra were widely studied. The concept of hom-Lie algebras was firstly introduced by Hartwig, Larsson, and Silvestrov in [8], when they are developing an approach to deformations of the Witt and Virasoro algebras based on \(\sigma\)-derivations. In other words, the structure of Hom-Lie algebras was used to study the deformations of Witt and Virasoro algebras [8, 9]. As this algebraic structure has close relation to discrete and deformed vector fields and differential calculus, it plays important role among some mathematicians and physicists \([8,11]\). For example, some authors have studied cohomology and homology theories in \([1,7,15]\), and representation theory in [13].

\footnotetext{
* Corresponding Author

AMS 2020 Mathematics Subject Classification: 17A30, 17D25, 53C15, 53D05
}

An almost product structure on a manifold \(M\) is a field \(K\) of involutive endomorphisms, i.e., \(K^{2}=I d_{T M}\). When the eigendistributions \(T^{ \pm} M\) with eigenvalues \(\pm 1\) have the same constant rank, then \(K\) is called almost paracomplex structure. An almost para-Hermitian structure is an almost paracomplex structure endowed with a pseudo-Riemannian metric \(g\) such that \(g(\cdot, \cdot)=-g(K \cdot, K \cdot)\). A manifold \(M\) is called almost para-Hermitian manifold if it is endowed with an almost para-Hermitian structure \((K, g)\). An almost para-Hermitian manifold \((M, K, g)\) is called para-Kähler, if its Levi-Civita connection \(\nabla\) satisfies \(\nabla K=0\) (see [10], for more details).

Recently, studying of geometric concepts over Lie groups and Lie algebras has been done by many researchers. For example, complex product structures have studied in [2], complex and Hermitian structures have studied in [3, 4], contact geometry have studied in [6] and para-Kähler and hyper-para-Kähler have studied in [5]. Inspired by these papers, Peyghan and Nourmohammadifar introduced in [12] some geometric concepts on hom-Lie algebras such as (almost) product, para-complex, para-Hermitian and para-Kähler structures.

The aim of this paper is the classification of (almost) product, para-complex and pseudo-Riemannian structures on two-dimensional hom-Lie algebras. Also, we prove that there exists no non-abelian para-Hermitian and para-Kähler proper hom-Lie algebras of dimension 2. In particular, we classify non-abelian para-Hermitian and para-Kähler Lie algebras of dimension 2.

\section*{2. Preliminaries}

In this section, we present geometric concepts on hom-Lie algebra (see [12], for more details).

Definition 2.1. [14] A hom-Lie algebra is a triple ( \(\mathfrak{g},[\cdot, \cdot], \phi)\) consisting of a linear space \(\mathfrak{g}\), a bilinear map (bracket) \([\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}\) and an algebra morphism \(\phi: \mathfrak{g} \rightarrow \mathfrak{g}\) satisfying
\[
\begin{gathered}
{[u, v]=-[v, u]} \\
{[\phi(u),[v, w]]+[\phi(v),[w, u]]+[\phi(w),[u, v]]=0}
\end{gathered}
\]
for any \(u, v, w \in \mathfrak{g}\). The hom-Lie algebra \((\mathfrak{g},[\cdot, \cdot], \phi)\) is called regular (involutive), if \(\phi\) is non-degenerate (satisfies \(\phi^{2}=1\) ).

It is known that a Lie algebra \((\mathfrak{g},[\cdot, \cdot])\) is a hom-Lie algebra with \(\phi=i d\). We call \((\mathfrak{g},[\cdot, \cdot], \phi)\) proper hom-Lie algebra if \(\phi \neq I d\).

Definition 2.2. An almost product structure on a hom-Lie algebra \((\mathfrak{g},[\cdot, \cdot], \phi)\), is a linear endomorphism \(K: \mathfrak{g} \rightarrow \mathfrak{g}\) satisfying
\[
K^{2}=I d, \quad \phi \circ K=K \circ \phi, \quad \phi^{2}=I d
\]

The above equations deduce
\[
(\phi \circ K)^{2}=I d
\]

Thus \(\mathfrak{g}\) decomposes to \(\mathfrak{g}^{1} \oplus \mathfrak{g}^{-1}\), where
\[
\begin{aligned}
\mathfrak{g}^{1} & :=\operatorname{ker}(\phi \circ K-I d), \\
\mathfrak{g}^{-1} & :=\operatorname{ker}(\phi \circ K+I d) .
\end{aligned}
\]

If \(\mathfrak{g}^{1}\) and \(\mathfrak{g}^{-1}\) have the same dimension \(n\), then \(K\) is called almost para-complex structure on \(\mathfrak{g}\) (in this case the dimensional of \(\mathfrak{g}\) is even). The Nijenhuis torsion of \(\phi \circ K\) is defined by
\[
\begin{array}{r}
4 N_{\phi \circ K}(u, v)=[(\phi \circ K)(u),(\phi \circ K)(v)]-\phi \circ K[(\phi \circ K)(u), v] \\
-\phi \circ K[u,(\phi \circ K)(v)]+[u, v], \tag{2.1}
\end{array}
\]
for all \(u, v \in \mathfrak{g}\). An almost product (almost para-complex) structure is called product (para-complex) if \(N_{\phi \circ K}=0\). In the following for simplicity, we set \(N=N_{\phi \circ K}\).

Let \((\mathfrak{g},[\cdot, \cdot], \phi)\) be a finite-dimensional hom-Lie algebra endowed with a bilinear symmetric non-degenerate form \(<,>\) such that for any \(u, v \in \mathfrak{g}\) the following equation is satisfied
\[
<\phi(u), \phi(v)>=<u, v>
\]

In this case, \((\mathfrak{g},[\cdot, \cdot], \phi,<,>)\) is called pseudo-Riemannian hom-Lie algebra. The associated hom-Levi-Civita product on \(\mathfrak{g}\) is the product . \(\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g},(u, v) \rightarrow\) \(u . v\), which is given by Koszul's formula
\[
\begin{align*}
2<u \cdot v, \phi(w)>=<[u, v], \phi(w)> & +<[w, v], \phi(u)> \\
& +<[w, u], \phi(v)>. \tag{2.2}
\end{align*}
\]

The hom-Levi-Civita product is determined entirely by the following relations
\[
\begin{equation*}
[u, v]=u \cdot v-v \cdot u \tag{2.3}
\end{equation*}
\]
and
\[
\begin{equation*}
<u \cdot v, \phi(w)>=-<\phi(v), u \cdot w> \tag{2.4}
\end{equation*}
\]
for any \(u, v, w \in \mathfrak{g}\) (note that the hom-Levi-Civita product there exists, if \(\phi\) is an isomorphism).

Definition 2.3. An almost para-Hermitian structure of a hom-Lie algebra \((\mathfrak{g},[\cdot, \cdot], \phi)\) is a pair \((K,<,>)\) consisting of an almost para-complex structure and a pseudo-Riemannian metric \(<,>\), such that for each \(u, v \in \mathfrak{g}\)
\[
\begin{equation*}
<(K \circ \phi)(u),(K \circ \phi)(v)>=-<u, v>. \tag{2.5}
\end{equation*}
\]

Also, the pair \((K,<,>)\) is called para-Hermitian structure if \(N=0\). In this case, \((\mathfrak{g},[\cdot, \cdot], \phi, K,<,>)\) is called para-Hermitian hom-Lie algebra.

Definition 2.4. A para-Kähler hom-Lie algebra is a pseudo-Riemannian homLie algebra \((\mathfrak{g},[\cdot, \cdot], \phi)\) endowed with an almost product structure \(K\), such that \(\phi \circ K\) is skew-symmetric with respect to \(<,>\), and \(\phi \circ K\) is invariant with respect to the home-Levi-Civita product, i.e., \(L_{u} \circ \phi \circ K=\phi \circ K \circ L_{u}\) for any \(u \in \mathfrak{g}\).

Note that condition \(u \cdot(\phi \circ K)(v)=(\phi \circ K)(u \cdot v)\) equivalent with
\[
\begin{equation*}
(\phi \circ K)(u) \cdot(\phi \circ K)(v)=(\phi \circ K)((\phi \circ K)(u) \cdot v), \tag{2.6}
\end{equation*}
\]
or
\[
\begin{equation*}
u \cdot v=(\phi \circ K)(u \cdot(\phi \circ K)(v)), \tag{2.7}
\end{equation*}
\]
for all \(u, v \in \mathfrak{g}\). The following statements are held for a para-Kähler hom-Lie algebra \((\mathfrak{g},[\cdot, \cdot], \phi,<,>, K)\) (see [12]):
i) \((\mathfrak{g},[\cdot \cdot \cdot], \phi, \Omega)\) is a symplectic hom-Lie algebra, where
\[
\begin{equation*}
\Omega(u, v)=<(\phi \circ K) u, v> \tag{2.8}
\end{equation*}
\]
ii) \(\mathfrak{g}^{1}\) and \(\mathfrak{g}^{-1}\) are subalgebras isotropic with respect to \(<,>\), and Lagrangian with respect to \(\Omega\),
iii) \((\mathfrak{g},[\cdot, \cdot], \phi,<,>, K)\) is a para-Hermitian hom-lie algebra,
iv) for any \(u \in \mathfrak{g}, u \cdot \mathfrak{g}^{1} \subset \mathfrak{g}^{1}\) and \(u \cdot \mathfrak{g}^{-1} \subset \mathfrak{g}^{-1}\) (the dot is the Levi-Civita product),
v) for any \(u \in \mathfrak{g}^{1}, \phi(u) \in \mathfrak{g}^{1}\) and for any \(\bar{u} \in \mathfrak{g}^{-1}, \phi(\bar{u}) \in \mathfrak{g}^{-1}\).

\section*{3. Main results}

In this section, we study (almost) product, para-complex, pseudo-Riemannian, para-Hermitian and para-Kähler structures on two-dimensional hom-Lie algebras.

Proposition 3.1. All non-abelian hom-Lie algebra of dimension 2 are as \((\mathfrak{g},[\cdot, \cdot], \phi)\) with
\[
\begin{equation*}
\left(\phi\left(e_{1}\right)=e_{1}+B e_{2}, \quad \phi\left(e_{2}\right)=C e_{2}\right) \quad \text { or } \quad\left(\phi\left(e_{1}\right)=A e_{1}+B e_{2}, \quad \phi\left(e_{2}\right)=0\right), \tag{3.1}
\end{equation*}
\]
where \(C \neq 0\) and \(\left\{e_{1}, e_{2}\right\}\) is a basis of \(\mathfrak{g}\) such that \(\left[e_{1}, e_{2}\right]=e_{2}\).
Proof. Let \((\mathfrak{g},[\cdot, \cdot], \phi)\) be a two-dimensional hom-Lie algebra. It is easy to see that there exists a basis \(\left\{e_{1}, e_{2}\right\}\) of \(\mathfrak{g}\) such that
\[
\left[e_{1}, e_{2}\right]=e_{2}
\]

If \(\{x, y\}\) is a basis of \(\mathfrak{g}\), then we have \([x, y]=a x+b y\), where \(a\) and \(b\) are not both zero. Without loss of generality it can be assumed that \(a \neq 0\) and so it follows that \(\left[e_{1}, e_{2}\right]=e_{2}\), where \(e_{1}=-a^{-1} y\) and \(e_{2}=x+a^{-1} b y\). In this basis, we can write
\[
\phi\left(e_{1}\right)=c_{1}^{1} e_{1}+c_{1}^{2} e_{2}, \quad \phi\left(e_{2}\right)=c_{2}^{1} e_{1}+c_{2}^{2} e_{2}
\]

Condition \(\phi\left[e_{1}, e_{2}\right]=\left[\phi\left(e_{1}\right), \phi\left(e_{2}\right)\right]\) implies
\[
c_{2}^{1}=0, \quad c_{1}^{1} c_{2}^{2}=c_{2}^{2}
\]

If \(c_{2}^{2}=0\), then we get the second relation of (3.1), but if \(c_{2}^{2} \neq 0\) then we obtain \(c_{1}^{1}=1\) and we deduce the first relation of (3.1).

Corollary 3.2. All non-abelian involutive hom-Lie algebra of dimension 2 are as \(\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}\right)\) with
\[
\begin{equation*}
\left(\phi\left(e_{1}\right)=e_{1}, \quad \phi\left(e_{2}\right)= \pm e_{2}\right) \quad \text { or } \quad\left(\phi\left(e_{1}\right)=e_{1}+B e_{2}, \quad \phi\left(e_{2}\right)=-e_{2}\right), \tag{3.2}
\end{equation*}
\]
where \(B \neq 0\).
Proof. Obviously, the second relation of (3.1) can not be involutive. Thus, we only study the first relation of (3.1). Condition \(\phi^{2}=I d\) implies \(C= \pm 1\) and \(B(1+C)=0\). If \(B=0\), then we get the first relation of (3.2). But if \(B \neq 0\), then we conclude \(C=-1\), which gives the second relation of (3.2).

Proposition 3.3. All non-abelian pseudo-Riemannain hom-Lie algebra of dimension 2 are as \((\mathfrak{g},[\cdot, \cdot], \widehat{\phi},<,>),(\mathfrak{g},[\cdot, \cdot], \bar{\phi}, \prec, \succ)\) and \((\mathfrak{g},[],, \widetilde{\phi}, \ll, \gg)\), where
\[
\begin{aligned}
\left(\widehat{\phi}\left(e_{1}\right)=e_{1}, \widehat{\phi}\left(e_{2}\right)\right. & \left.=e_{2}\right), \quad\left(\bar{\phi}\left(e_{1}\right)=e_{1}, \bar{\phi}\left(e_{2}\right)=-e_{2}\right) \\
\left(\widetilde{\phi}\left(e_{1}\right)\right. & \left.=e_{1}+B e_{2}, \widetilde{\phi}\left(e_{2}\right)=-e_{2}, \quad B \neq 0\right),
\end{aligned}
\]
and \(<,>\) is an arbitrary bilinear symmetric non-degenerate form and \(\prec, \succ, \ll\) , \(\gg\) are bilinear symmetric non-degenerate forms with the following conditions
\[
\begin{gathered}
{[<,>]=\left[\begin{array}{cc}
<e_{1}, e_{1}> & <e_{1}, e_{2}> \\
<e_{1}, e_{2}> & <e_{2}, e_{2}>
\end{array}\right], \quad<e_{1}, e_{1}><e_{2}, e_{2}>-<e_{1}, e_{2}>^{2} \neq 0,} \\
{[\prec, \succ]=\left[\begin{array}{cc}
\prec e_{1}, e_{1} \succ & 0 \\
0 & \prec e_{2}, e_{2} \succ
\end{array}\right], \quad \prec e_{1}, e_{1} \succ \neq 0, \prec e_{2}, e_{2} \succ \neq 0,} \\
{[\ll, \gg]=\left[\begin{array}{cc}
\ll e_{1}, e_{1} \gg & -\frac{B}{2} \ll e_{2}, e_{2} \gg \\
-\frac{B}{2} \ll e_{2}, e_{2} \gg & \ll e_{2}, e_{2} \gg
\end{array}\right]} \\
\ll e_{1}, e_{1} \gg \ll e_{2}, e_{2} \gg-\frac{B^{2}}{4} \ll e_{2}, e_{2} \gg^{2} \neq 0 .
\end{gathered}
\]

Proof. Let ( \(\mathfrak{g},[\cdot, \cdot], \phi,<,>\) ) be a two-dimensional pseudo-Riemannian hom-Lie algebra. Then we have
\[
<\phi\left(e_{i}\right), \phi\left(e_{j}\right)>=<e_{i}, e_{j}>, \quad i, j=1,2
\]

According to Proposition 3.1, \(\phi\) satisfies in (3.1). If we consider the second relation of (3.1), then we deduce \(<,>=0\), that is contradiction with the nondegenerate property of \(<,>\). Thus \(\phi\) only satisfies in the first relation of (3.1). Using \(<\phi\left(e_{i}\right), \phi\left(e_{j}\right)>=<e_{i}, e_{j}>, i, j=1,2\), we get
\[
\begin{array}{r}
B\left(2<e_{1}, e_{2}>+B<e_{2}, e_{2}>\right)=0, \quad\left(1-C^{2}\right)<e_{2}, e_{2}>=0 \\
(C-1)<e_{1}, e_{2}>+B C<e_{2}, e_{2}>=0 \tag{3.4}
\end{array}
\]

According to the above equation, we consider two cases:
Case 1. \(B=0\).

In this case, (3.3) reduce to the following
\[
\begin{equation*}
\left(1-C^{2}\right)<e_{2}, e_{2}>=0, \quad(C-1)<e_{1}, e_{2}>=0 . \tag{3.5}
\end{equation*}
\]

If \(C=1\), then the above equations are hold and so \(<,>\) is arbitrary. Therefore we have the pseudo-Riemannain hom-Lie algebra ( \(\mathfrak{g},[\cdot, \cdot], \widehat{\phi},<,>\) ) given by the assertion. If \(C=-1\), then the first equation of (3.5) holds and from the second equation we deduce
\[
<e_{1}, e_{2}>=0
\]

Therefore we obtain the pseudo-Riemannain hom-Lie algebra ( \(\mathfrak{g},[\cdot, \cdot], \bar{\phi}, \prec, \succ\) ) given by the assertion. But if \(C \neq \pm 1\), (3.5) gives \(<e_{1}, e_{2}>=<e_{2}, e_{2}>=0\), which is a contradiction.

Case 2. \(B \neq 0\).

In this case, we consider the possible cases for \(C\) and we study equations of (3.3) (note that according to Proposition 3.1, \(C\) is nonzero). If \(C=1\), the third equation of (3.3) yields \(<e_{2}, e_{2}>=0\). Setting this in the first equation of (3.3) we get \(<e_{1}, e_{2}>=0\). Therefore we have \(<e_{1}, e_{2}>=<e_{2}, e_{2}>=0\), which is a contradiction. Similarly, if \(C \neq \pm 1\), we obtain \(<e_{1}, e_{2}>=<e_{2}, e_{2}>=0\), which is a contradiction. But if \(C=-1\), then the second equation of (3.3) holds and the first and third equations of (3.3) reduce to
\[
2<e_{1}, e_{2}>+B<e_{2}, e_{2}>=0
\]
which gives
\[
<e_{1}, e_{2}>=-\frac{B}{2}<e_{2}, e_{2}>
\]

Therefore we obtain the pseudo-Riemannain hom-Lie algebra ( \(\left.\mathfrak{g},[],, \widetilde{\phi}_{\mathfrak{g}}, \ll, \gg\right)\) given by the assertion.

Since \(\widehat{\phi}^{2}=\bar{\phi}^{2}=\widetilde{\phi}_{\mathfrak{g}}^{2}=i d_{\mathfrak{g}}\), these structures are involutive.

Proposition 3.4. The hom-Levi-Civita product on the pseudo-Riemannain hom-Lie algebra ( \(\mathfrak{g},[\cdot, \cdot], \widehat{\phi},<,>\) ) is
\[
\begin{equation*}
e_{1} \cdot e_{1}=0, \quad e_{1} \cdot e_{2}=0, \quad e_{2} \cdot e_{1}=-e_{2}, \quad e_{2} \cdot e_{2}=\frac{\left\langle e_{2}, e_{2}\right\rangle}{\left\langle e_{1}, e_{1}\right\rangle} e_{1} \tag{3.6}
\end{equation*}
\]
if \(\left\langle e_{1}, e_{2}\right\rangle=0\), and
\[
\begin{equation*}
e_{1} \cdot e_{1}=\frac{<e_{1}, e_{2}>^{2}}{\operatorname{det}[<,>]} e_{1}-\frac{<e_{1}, e_{1}><e_{1}, e_{2}>}{\operatorname{det}[<,>]} e_{2} \tag{3.7}
\end{equation*}
\]
\[
\begin{align*}
& e_{1} \cdot e_{2}=\frac{<e_{2}, e_{2}>}{\operatorname{det}[<,>]} e_{1}-\frac{<e_{1}, e_{2}>}{\operatorname{det}[<,>]} e_{2}  \tag{3.8}\\
& e_{2} \cdot e_{1}=\frac{<e_{2}, e_{2}>}{\operatorname{det}[<,>]} e_{1}-\frac{\operatorname{det}[<,>]+<e_{1}, e_{2}>}{\operatorname{det}[<,>]} e_{2}  \tag{3.9}\\
& e_{2} \cdot e_{2}=\frac{<e_{2}, e_{2}>^{2}}{\operatorname{det}[<,>]<e_{1}, e_{2}>} e_{1}-\frac{<e_{2}, e_{2}>}{\operatorname{det}[<,>]} e_{2} \tag{3.10}
\end{align*}
\]
if \(<e_{1}, e_{2}>\neq 0\).
Proof. Using Koszul's formula we have
\[
\begin{align*}
2<e_{i} \cdot e_{j}, \widehat{\phi}\left(e_{k}\right)>=<\left[e_{i}, e_{j}\right], \widehat{\phi}\left(e_{k}\right)> & +<\left[e_{k}, e_{j}\right], \widehat{\phi}\left(e_{i}\right)> \\
& +<\left[e_{k}, e_{i}\right], \widehat{\phi}\left(e_{j}\right)> \tag{3.11}
\end{align*}
\]
where \(i, j, k=1,2\). Putting \(i=j=k=1\) in (3.11), we get
\[
<e_{1} \cdot e_{1}, \widehat{\phi}\left(e_{1}\right)>=0 .
\]

Let
\[
\begin{equation*}
e_{1} \cdot e_{1}=A_{11}^{1} e_{1}+A_{11}^{2} e_{2} . \tag{3.12}
\end{equation*}
\]

Then using the above equation we have
\[
\begin{equation*}
A_{11}^{1}<e_{1}, e_{1}>+A_{11}^{2}<e_{1}, e_{2}>=0 . \tag{3.13}
\end{equation*}
\]

On the other hand, considering \(i=j=1\) and \(k=2\) in (3.11), we imply
\[
<e_{1} \cdot e_{1}, \widehat{\phi}\left(e_{2}\right)>=-<e_{1}, e_{2}>
\]

Applying (3.12) one can write
\[
\begin{equation*}
A_{11}^{1}<e_{1}, e_{2}>+A_{11}^{2}<e_{2}, e_{2}>=-<e_{1}, e_{2}> \tag{3.14}
\end{equation*}
\]

Let
\[
e_{1} \cdot e_{2}=A_{12}^{1} e_{1}+A_{12}^{2} e_{2} .
\]

Then using (3.11) and similar calculations as the above, we obtain
\[
\begin{array}{r}
A_{12}^{1}<e_{1}, e_{1}>+A_{12}^{2}<e_{1}, e_{2}>=<e_{1}, e_{2}> \\
A_{12}^{1}<e_{1}, e_{2}>+A_{12}^{2}<e_{2}, e_{2}>=0 \tag{3.16}
\end{array}
\]

Similarly, if we consider
\[
e_{2} \cdot e_{2}=A_{22}^{1} e_{1}+A_{22}^{2} e_{2},
\]
then using (3.11) we deduce
\[
\begin{array}{r}
A_{22}^{1}<e_{1}, e_{1}>+A_{22}^{2}<e_{1}, e_{2}>=<e_{2}, e_{2}> \\
A_{22}^{1}<e_{1}, e_{2}>+A_{22}^{2}<e_{2}, e_{2}>=0 . \tag{3.18}
\end{array}
\]

For the above equations we can consider the following possible cases :

Case 1. \(<e_{1}, e_{2}>=0\).

In this case we have \(<e_{1}, e_{1}>\neq 0\) and \(<e_{2}, e_{2}>\neq 0\). Thus from (3.13) and (3.14) we obtain \(A_{11}^{1}=A_{11}^{2}=0\), and consequently we get the first equation of (3.6). Similarly, (3.15) and (3.16) imply
\[
A_{12}^{1}=A_{12}^{2}=0 .
\]

Thus we deduce the second equation of (3.6). From \(\left[e_{1}, e_{2}\right]=e_{1} \cdot e_{2}-e_{2} \cdot e_{1}\) we obtain the third equation of (3.6). Finally (3.17) and (3.18) give
\[
A_{22}^{1}=\frac{\left\langle e_{2}, e_{2}\right\rangle}{\left\langle e_{1}, e_{1}\right\rangle}, \quad A_{22}^{2}=0
\]

Thus we have the fourth equation of (3.6).

Case 2. \(<e_{1}, e_{2}>\neq 0\).

In this case, (3.13) gives
\[
A_{11}^{2}=-A_{11}^{1} \frac{\left.<e_{1}, e_{1}\right\rangle}{\left.<e_{1}, e_{2}\right\rangle}
\]

Setting it in (3.14) yields
\[
A_{11}^{1}=\frac{<e_{1}, e_{2}>^{2}}{\operatorname{det}[<,>]}
\]
and so
\[
A_{11}^{2}=-\frac{<e_{1}, e_{1}><e_{1}, e_{2}>}{\operatorname{det}[<,>]}
\]

Thus we have (3.7). Similarly, we can obtain (3.8)-(3.10).

Proposition 3.5. The hom-Levi-Civita product on pseudo-Riemannain homLie algebra ( \(\mathfrak{g},[\cdot, \cdot], \bar{\phi}, \prec \succ\) ) is as follows
\[
e_{1} \bullet e_{1}=e_{1} \bullet e_{2}=0, \quad e_{2} \bullet e_{1}=-e_{2}, \quad e_{2} \bullet e_{2}=-\frac{\prec e_{2}, e_{2} \succ}{\prec e_{1}, e_{1} \succ} e_{1} .
\]

Proof. Using Koszul's formula we have
\[
\begin{array}{r}
2 \prec e_{i} \bullet e_{j}, \bar{\phi}\left(e_{k}\right) \succ=\prec\left[e_{i}, e_{j}\right], \bar{\phi}\left(e_{k}\right) \succ \\
+\prec\left[e_{k}, e_{j}\right], \bar{\phi}\left(e_{i}\right) \succ+\prec\left[e_{k}, e_{i}\right], \bar{\phi}\left(e_{j}\right) \succ, \quad i, j, k=1,2 . \tag{3.19}
\end{array}
\]

Let
\[
e_{i} \bullet e_{j}=A_{i j}^{1} e_{1}+A_{i j}^{2} e_{2}
\]

Using the above equation and definition of \(\bar{\phi}\), we get
\[
\prec e_{1} \bullet e_{1}, \bar{\phi}\left(e_{1}\right) \succ=0 .
\]

Since \(\prec e_{1}, e_{2} \succ=0\), we get \(A_{11}^{1} \prec e_{1}, e_{1} \succ=0\) and consequently \(A_{11}^{1}=0\). Similarly, we obtain \(\prec e_{1} \bullet e_{1}, \bar{\phi}\left(e_{2}\right) \succ=0\) which gives \(A_{11}^{2}=0\). Therefore, we have \(e_{1} \bullet e_{1}=0\). Similarly, using (3.19) we get
\[
\prec e_{1} \bullet e_{2}, \bar{\phi}\left(e_{1}\right) \succ=\prec e_{1} \bullet e_{2}, e_{1} \succ=0
\]
which implies \(A_{12}^{1}=0\). Also (3.19) gives \(\prec e_{1} \bullet e_{2}, e_{2} \succ=0\) and consequently \(A_{12}^{2}=0\). Thus \(e_{1} \bullet e_{2}=0\). Since \(\left[e_{1}, e_{2}\right]=e_{2}\), using \(\left[e_{1}, e_{2}\right]=e_{1} \bullet e_{2}-e_{2} \bullet e_{1}\) we deduce
\[
e_{2} \bullet e_{1}=-e_{2}
\]

Again, using (3.19) we get
\[
2 \prec e_{2} \bullet e_{2}, \bar{\phi}\left(e_{1}\right) \succ=-2 \prec e_{2}, e_{2} \succ
\]
which gives
\[
A_{22}^{1}=-\frac{\prec e_{2}, e_{2} \succ}{\prec e_{1}, e_{1} \succ}
\]

Also, we obtain
\[
2 \prec e_{2} \bullet e_{2}, \bar{\phi}\left(e_{2}\right) \succ=0,
\]
which implies \(A_{22}^{2}=0\). Thus we have
\[
e_{2} \bullet e_{2}=-\frac{\prec e_{2}, e_{2} \succ}{\prec e_{1}, e_{1} \succ} e_{1} .
\]

This completes the proof.

Proposition 3.6. The hom-Levi-Civita product on the pseudo-Riemannain hom-Lie algebra \(\left(\mathfrak{g},[\cdot, \cdot], \widetilde{\phi}_{\mathfrak{g}}, \ll, \gg\right)\) is as follows
\[
\begin{align*}
& e_{1} \star e_{1}=\frac{-B^{2} \ll e_{2}, e_{2} \gg}{4 \mathcal{A}} e_{1}+\frac{2 B \ll e_{1}, e_{1} \gg-B^{3} \ll e_{2}, e_{2} \gg}{4 \mathcal{A}} e_{2}  \tag{3.20}\\
& e_{1} \star e_{2}=\frac{B \ll e_{2}, e_{2} \gg}{2 \mathcal{A}} e_{1}+\frac{B^{2} \ll e_{2}, e_{2} \gg}{4 \mathcal{A}} e_{2}  \tag{3.21}\\
& e_{2} \star e_{1}=\frac{B \ll e_{2}, e_{2} \gg}{2 \mathcal{A}} e_{1}+\frac{B^{2} \ll e_{2}, e_{2} \gg-2 \ll e_{1}, e_{1} \gg}{2 \mathcal{A}} e_{2}  \tag{3.22}\\
& e_{2} \star e_{2}=\frac{-\ll e_{2}, e_{2} \gg}{\mathcal{A}} e_{1}-\frac{B \ll e_{2}, e_{2} \gg}{2 \mathcal{A}} e_{2} \tag{3.23}
\end{align*}
\]
where \(\mathcal{A}=\ll e_{1}, e_{1} \gg-\frac{B^{2}}{4} \ll e_{2}, e_{2} \gg\).
Proof. Using Koszul's formula, we have
\[
\begin{array}{r}
2 \ll e_{i} \star e_{j}, \widetilde{\phi}\left(e_{k}\right) \gg=\ll\left[e_{i}, e_{j}\right], \widetilde{\phi}\left(e_{k}\right) \gg \\
+\ll\left[e_{k}, e_{j}\right], \widetilde{\phi}\left(e_{i}\right) \gg+\ll\left[e_{k}, e_{i}\right], \widetilde{\phi}\left(e_{j}\right) \gg, \quad i, j, k=1,2 . \tag{3.24}
\end{array}
\]

Setting \(i=j=k=1\) in (3.24), we deduce
\[
\ll e_{1} \star e_{1}, \widetilde{\phi}\left(e_{1}\right) \gg=0
\]

If we consider
\[
\begin{equation*}
e_{1} \star e_{1}=A_{11}^{1} e_{1}+A_{11}^{2} e_{2} \tag{3.25}
\end{equation*}
\]
then (3.24) and the definition of \(\ll, \gg\) imply
\[
\begin{equation*}
A_{11}^{1} \ll e_{1}, e_{1} \gg+\frac{B}{2}\left(A_{11}^{2}-B A_{11}^{1}\right) \ll e_{2}, e_{2} \gg=0 \tag{3.26}
\end{equation*}
\]

Again, putting \(i=j=1\) and \(k=2\) in (3.24), we deduce
\[
\ll e_{1} \star e_{1}, \widetilde{\phi}\left(e_{2}\right) \gg=-\ll e_{2}, e_{1}+B e_{2} \gg .
\]

So using (3.25) we can write
\[
\left(-\frac{B}{2} A_{11}^{1}+A_{11}^{2}\right) \ll e_{2}, e_{2} \gg=\frac{B}{2} \ll e_{2}, e_{2} \gg,
\]
which gives
\[
\begin{equation*}
A_{11}^{2}=\frac{B}{2}+\frac{B}{2} A_{11}^{1} . \tag{3.27}
\end{equation*}
\]

Setting (3.27) in (3.26) we get
\[
\begin{equation*}
A_{11}^{1}\left(\ll e_{1}, e_{1} \gg-\frac{B^{2}}{4} \ll e_{2}, e_{2} \gg\right)+\frac{B^{2}}{4} \ll e_{2}, e_{2} \gg=0 . \tag{3.28}
\end{equation*}
\]

If \(A_{11}^{1}=0\), then the above equation gives \(\ll e_{2}, e_{2} \gg=0\), which is a contradiction. Moreover, since the determinant of \([\ll, \gg]\) is non-zero, then
\[
\ll e_{1}, e_{1} \gg-\frac{B^{2}}{4} \ll e_{2}, e_{2} \gg 0
\]

Thus, from (3.28) we deduce
\[
A_{11}^{1}=\frac{-B^{2} \ll e_{2}, e_{2} \gg}{4\left(\ll e_{1}, e_{1} \gg-\frac{B^{2}}{4} \ll e_{2}, e_{2} \gg\right)} .
\]

Applying (3.27) and the above equation, we get
\[
A_{11}^{2}=\frac{2 B \ll e_{1}, e_{1} \gg-B^{3} \ll e_{2}, e_{2} \gg}{4\left(\ll e_{1}, e_{1} \gg-\frac{B^{2}}{4} \ll e_{2}, e_{2} \gg\right)} .
\]

Two above equations give (3.20). If we consider
\[
e_{1} \star e_{2}=A_{12}^{1} e_{1}+A_{12}^{2} e_{2}
\]
then using (3.24) and similar calculations as the above, we obtain
\[
A_{12}^{1} \ll e_{1}, e_{1} \gg-\frac{B}{2}\left(B A_{12}^{1}-A_{12}^{2}+1\right) \ll e_{2}, e_{2} \gg=0, \quad A_{12}^{2}=\frac{B}{2} A_{12}^{1}
\]
which give
\[
\begin{aligned}
A_{12}^{1} & =\frac{B \ll e_{2}, e_{2} \gg}{2\left(\ll e_{1}, e_{1} \gg-\frac{B^{2}}{4} \ll e_{2}, e_{2} \gg\right)}, \\
A_{12}^{2} & =\frac{B^{2} \ll e_{2}, e_{2} \gg}{4\left(\ll e_{1}, e_{1} \gg-\frac{B^{2}}{4} \ll e_{2}, e_{2} \gg\right)},
\end{aligned}
\]
and consequently (3.21). Also, using \(\left[e_{1}, e_{2}\right]=e_{1} \star e_{2}-e_{2} \star e_{1}\) we get (3.22).
To prove (3.23), we consider
\[
e_{2} \star e_{2}=A_{22}^{1} e_{1}+A_{22}^{2} e_{2}
\]

Similarly, using (3.24) we get
\[
\begin{aligned}
& A_{22}^{1} \ll e_{1}, e_{1} \gg+\frac{B}{2}\left(A_{22}^{2}-B A_{22}^{1}\right) \ll e_{2}, e_{2} \gg+\ll e_{2}, e_{2} \gg=0 \\
& A_{22}^{2}=\frac{1}{2} B A_{22}^{1}
\end{aligned}
\]
which imply (3.23).

Proposition 3.7. All non-abelian almost product hom-Lie algebra of dimension 2 are as \((\mathfrak{g},[\cdot, \cdot], \widehat{\phi}, \widehat{K})\), \((\mathfrak{g},[\cdot, \cdot], \bar{\phi}, \bar{K})\) and \(\left(\mathfrak{g},[\cdot, \cdot], \widetilde{\phi}_{\mathfrak{g}}, \widetilde{K}\right)\), where \(\widehat{\phi}, \bar{\phi}, \widetilde{\phi}_{\mathfrak{g}}\) are given by Proposition 3.3 and \(\widehat{K}, \bar{K}\) and \(\widetilde{K}\) have the following matrix presentations:
\[
\begin{gathered}
{[\widehat{K}]=\left[\begin{array}{cc}
a & b \\
c & -a
\end{array}\right], \quad[\widehat{K}]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \epsilon
\end{array}\right], \quad[\bar{K}]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & -\lambda
\end{array}\right], \quad[\bar{K}]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \epsilon
\end{array}\right],} \\
{[\widetilde{K}]=\left[\begin{array}{cc}
\lambda & \lambda B \\
0 & -\lambda
\end{array}\right], \quad[\widetilde{K}]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right],}
\end{gathered}
\]
where \(a^{2}+b c=1, \lambda= \pm 1, \epsilon= \pm 1\) and \(B \neq 0\).

Proof. Let \(\left(\mathfrak{g},[\cdot, \cdot], \phi_{\mathfrak{g}}, K\right)\) be an almost product hom-Lie algebra. Conditions
\[
K^{2}\left(e_{1}\right)=e_{1}, \quad K^{2}\left(e_{2}\right)=e_{2}
\]
give
\[
\begin{equation*}
\left(\rho_{1}^{1}\right)^{2}+\rho_{1}^{2} \rho_{2}^{1}=1, \quad \rho_{1}^{2}\left(\rho_{1}^{1}+\rho_{2}^{2}\right)=0, \quad \rho_{2}^{1}\left(\rho_{1}^{1}+\rho_{2}^{2}\right)=0, \quad\left(\rho_{2}^{2}\right)^{2}+\rho_{1}^{2} \rho_{2}^{1}=1 \tag{3.29}
\end{equation*}
\]

Now we consider two cases:
Case 1. \(\rho_{2}^{2}=-\rho_{1}^{1}\).
In this case, the second and third equations of (3.29) hold and the first and the fourth equations of (3.29) reduce to \(\left(\rho_{1}^{1}\right)^{2}+\rho_{1}^{2} \rho_{2}^{1}=1\).

Case 2. \(\rho_{2}^{2} \neq-\rho_{1}^{1}\).
In this case, the second and third equations of (3.29) give \(\rho_{1}^{2}=\rho_{2}^{1}=0\), and so \(\left(\rho_{1}^{1}\right)^{2}=\left(\rho_{2}^{2}\right)^{2}=1\), from the first and the fourth equations of (3.29).

From two above cases, we deduce that \(K\) has the following matrix presentation:
\[
\left[\begin{array}{cc}
a & b  \tag{3.30}\\
c & -a
\end{array}\right], \quad\left[\begin{array}{cc}
\lambda & 0 \\
0 & \epsilon
\end{array}\right], \quad a^{2}+b c=1, \quad \lambda= \pm 1, \quad \epsilon= \pm 1
\]

If we consider \(\widehat{\phi}=I d\), then \((\mathfrak{g},[],, \widehat{\phi}, \widehat{K})\) with \(\widehat{K}\) given by two matrices of (3.30) is an almost product (hom-)Lie algebra. Now, we consider \(\bar{\phi}\). If the matrix presentation of \(\bar{K}\) is as the second matrix of (3.30), then it is easy to see that \(\bar{K} \circ \bar{\phi}=\bar{\phi} \circ \bar{K}\). But if the matrix presentation of \(\bar{K}\) is as the first matrix of (3.30), then condition \((\bar{K} \circ \bar{\phi})\left(e_{1}\right)=(\bar{\phi} \circ \bar{K})\left(e_{1}\right)\) implies \(b=0\) and \((\bar{K} \circ \bar{\phi})\left(e_{2}\right)=(\bar{\phi} \circ \bar{K})\left(e_{2}\right)\) yields \(c=0\). Consequently, we get \(a^{2}=1\). Finally, we consider \(\widetilde{\phi}_{\mathfrak{g}}\). If the matrix presentation of \(\widetilde{K}\) is as the first matrix of (3.30), then condition \((\widetilde{K} \circ \widetilde{\phi})\left(e_{2}\right)=(\widetilde{\phi} \circ \widetilde{K})\left(e_{2}\right)\) implies \(c=0\) and consequently, \(a^{2}=1\). Therefore we have
\[
a=\lambda,
\]
where \(\lambda= \pm 1\). Also, condition \((\widetilde{K} \circ \widetilde{\phi})\left(e_{1}\right)=(\tilde{\phi} \circ \widetilde{K})\left(e_{1}\right)\) implies \(b=\lambda B\). But if the matrix presentation of \(\widetilde{K}\) is as the second matrix of (3.30), then condition \(\widetilde{K} \circ \widetilde{\phi}=\widetilde{\phi} \circ \widetilde{K}\) gives \(\lambda=\epsilon\).

Proposition 3.8. All non-abelian almost para-complex hom-Lie algebra of di\(\underset{\sim}{\text { mension }} 2\) are as \((\mathfrak{g},[\cdot, \cdot], \widehat{\phi}, \widehat{K}),(\mathfrak{g},[\cdot, \cdot], \bar{\phi}, \bar{K})\) and \((\mathfrak{g},[\cdot, \cdot], \widetilde{\phi}, \widetilde{K})\), where \(\widehat{\phi}, \bar{\phi}\), \(\widetilde{\phi}\) are given by Proposition 3.3 and \(\widehat{K}, \bar{K}\) and \(\widetilde{K}\) have the following matrix presentations:
\[
\begin{gather*}
{[\widehat{K}]=\left[\begin{array}{cc}
\lambda & b \\
0 & -\lambda
\end{array}\right], \quad[\widehat{K}]=\left[\begin{array}{cc}
\lambda & 0 \\
c & -\lambda
\end{array}\right], \quad[\widehat{K}]=\left[\begin{array}{cc}
a & d \\
h & -a
\end{array}\right],}  \tag{3.31}\\
{[\bar{K}]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right], \quad[\widetilde{K}]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & \lambda
\end{array}\right],} \tag{3.32}
\end{gather*}
\]
where \(d, h \neq 0, a^{2}+d h=1\) and \(\lambda= \pm 1\). Moreover, all of these structures are integrable.
Proof. At first, we consider \((\mathfrak{g},[\cdot, \cdot \cdot], \widehat{\phi}, \widehat{K})\) with the first matrix of Proposition 3.7, i.e.,
\[
\widehat{K}\left(e_{1}\right)=a e_{1}+b e_{2}, \quad \widehat{K}\left(e_{2}\right)=c e_{1}-a e_{2}, \quad a^{2}+b c=1 .
\]

If this structure is an almost para-complex, then we must have a basis \(\left\{f_{1}, f_{2}\right\}\) such that \(\widehat{K}\left(f_{1}\right)=f_{1}\) and \(\widehat{K}\left(f_{2}\right)=-f_{2}(\) note that \(\widehat{\phi}=i d)\). We can write
\[
f_{1}=c_{1}^{1} e_{1}+c_{1}^{2} e_{2}, \quad f_{2}=c_{2}^{1} e_{1}+c_{2}^{2} e_{2}
\]

Condition \(\widehat{K}\left(f_{1}\right)=f_{1}\) implies
\[
\begin{equation*}
(a-1) c_{1}^{1}+c c_{1}^{2}=0, \quad b c_{1}^{1}-(1+a) c_{1}^{2}=0 \tag{3.33}
\end{equation*}
\]

Similarly, \(\widehat{K}\left(f_{2}\right)=-f_{2}\) yields
\[
\begin{equation*}
(1+a) c_{2}^{1}+c c_{2}^{2}=0, \quad b c_{2}^{1}+(1-a) c_{2}^{2}=0 \tag{3.34}
\end{equation*}
\]

Now, we consider possible cases for (3.33) and (3.34) with respect to \(a, b\) and c.

Case 1. \(c=0\).
In this case, from equation \(a^{2}+b c=1\) we deduce \(a= \pm 1\). Now we consider the following cases:

Case 1.1. \(a=1, b=0\). In this case, from (3.33) and (3.34) we deduce \(c_{1}^{2}=c_{2}^{1}=0\) and so we obtain the almost para-complex structure
\[
[\widehat{K}]=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
\]

Case 1.2. \(a=1, b \neq 0\). In this case, (3.33) and (3.34) give \(c_{2}^{1}=0\) and \(c_{1}^{2}=\frac{b}{2} c_{1}^{1}\), which deduce the almost para-complex structure
\[
[\widehat{K}]=\left[\begin{array}{cc}
1 & b \\
0 & -1
\end{array}\right]
\]

Case 1.3. \(a=-1, b=0\). In this case, (3.33) and (3.34) imply \(c_{1}^{1}=c_{2}^{2}=0\), which imply the almost para-complex structure
\[
[\widehat{K}]=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
\]

Case 1.4. \(a=-1, b \neq 0\). In this case, (3.33) and (3.34) imply \(c_{1}^{1}=0\) and \(c_{2}^{2}=-\frac{b}{2} c_{2}^{1}\), which give the almost para-complex structure
\[
[\widehat{K}]=\left[\begin{array}{cc}
-1 & b \\
0 & 1
\end{array}\right]
\]

According to the cases 1.1 to cases 1.4, we deduce that in Case 1, the almost para-complex \(\widehat{K}\) has the matrix presentation \([\widehat{K}]=\left[\begin{array}{cc}\lambda & b \\ 0 & -\lambda\end{array}\right]\), with respect to basis \(\left\{e_{1}, e_{2}\right\}\), where \(\lambda= \pm 1\) and \(b\) is arbitrary.

Case 2. \(b=0\).
Similar to Case 1, in this case we have \(a= \pm 1\). If \(c=0\), then we derive again Cases 1.1 ans 1.3. Thus we only consider \(c \neq 0\) and we study the following cases:

Case 2.1. \(a=1\). In this case, (3.33) and (3.34) give \(c_{1}^{2}=0\) and \(c_{2}^{1}=-\frac{c}{2} c_{2}^{2}\), which give the almost para-complex structure
\[
[\widehat{K}]=\left[\begin{array}{cc}
1 & 0 \\
c & -1
\end{array}\right]
\]

Case 2.2. \(a=-1\). In this case, (3.33) and (3.34) imply \(c_{2}^{2}=0\) and \(c_{1}^{1}=\frac{c}{2} c_{1}^{2}\), which imply the almost para-complex structure
\[
[\widehat{K}]=\left[\begin{array}{cc}
-1 & 0 \\
c & 1
\end{array}\right]
\]

According to the cases 2.1 to cases 2.2 , we deduce that in Case 2, the almost para-complex \(\widehat{K}\) has the matrix presentation
\[
[\widehat{K}]=\left[\begin{array}{cc}
\lambda & 0 \\
c & -\lambda
\end{array}\right]
\]
with respect to basis \(\left\{e_{1}, e_{2}\right\}\), where \(\lambda= \pm 1\) and \(c\) is arbitrary.

Case 3. \(b, c \neq 0\).

In this case, from condition \(a^{2}+b c=1\), it follows that \(a \neq \pm 1\). Also, from (3.33) and (3.34) we derive that
\[
c_{1}^{2}=\frac{1-a}{c} c_{1}^{1}, \quad c_{2}^{1}=-\frac{c}{a+1} c_{2}^{2} .
\]

Thus, we get the almost para-complex structure \([\widehat{K}]=\left[\begin{array}{cc}a & b \\ c & -a\end{array}\right]\), with respect to basis \(\left\{e_{1}, e_{2}\right\}\), where \(a^{2}+b c=1\) and \(b, c \neq 0\). Here, we consider ( \(\mathfrak{g},[\cdot, \cdot], \widehat{\phi}, \widehat{K}\) ) with the second matrix of Proposition 3.7, i.e., \(\widehat{K}\left(e_{1}\right)=\lambda e_{1}\) and \(\widehat{K}\left(e_{2}\right)=\epsilon e_{2}\). These equations give \((\widehat{K} \circ \widehat{\phi})\left(e_{1}\right)=\lambda e_{1}\) and \((\widehat{K} \circ \widehat{\phi})\left(e_{2}\right)=\epsilon e_{2}\). Thus \(\operatorname{dim} \mathfrak{g}^{1}=\) \(\operatorname{dim} \mathfrak{g}^{-1}\) if and only if \(\epsilon=-\lambda\). Thus \(\widehat{K}\) reduce to \(\left[\begin{array}{cc}\lambda & 0 \\ 0 & -\lambda\end{array}\right]\), which is the particular case of the second matrix of the assertion.

Now, we consider ( \(\mathfrak{g},[],, \bar{\phi}, \bar{K}\) ) with the third matrix of Proposition 3.7, i.e., \(\bar{K}\left(e_{1}\right)=\lambda e_{1}, \bar{K}\left(e_{2}\right)=-\lambda e_{2}\). It is easy to see that
\[
(\bar{K} \circ \bar{\phi})\left(e_{1}\right)=\lambda e_{1}, \quad(\bar{K} \circ \bar{\phi})\left(e_{2}\right)=\lambda e_{2} .
\]

These equations show that \(\operatorname{dim} \mathfrak{g}^{1} \neq \operatorname{dim} \mathfrak{g}^{-1}\) and so \((\mathfrak{g},[],, \bar{\phi}, \bar{K})\) can not be an almost para-complex hom-Lie algebra in this case. But if we consider \((\mathfrak{g},[],, \bar{\phi}, \bar{K})\) with the fourth matrix of Proposition 3.7, i.e., \(\bar{K}\left(e_{1}\right)=\lambda e_{1}\), \(\bar{K}\left(e_{2}\right)=\epsilon e_{2}\), we get
\[
(\bar{K} \circ \bar{\phi})\left(e_{1}\right)=\lambda e_{1}, \quad(\bar{K} \circ \bar{\phi})\left(e_{2}\right)=-\epsilon e_{2} .
\]

These equations show that \(\operatorname{dim} \mathfrak{g}^{1}=\operatorname{dim} \mathfrak{g}^{-1}\) if and only if \(\lambda=\epsilon\). Thus \(\bar{K}\) reduce to the fourth matrix of the assertion.

Here, we consider \((\mathfrak{g},[],, \widetilde{\phi}, \widetilde{K})\) with the fifth matrix of Proposition 3.7, i.e., \(\widetilde{K}\left(e_{1}\right)=\lambda e_{1}+\lambda B e_{2}, \widetilde{K}\left(e_{2}\right)=-\lambda e_{2}\). It is easy to see that
\[
(\widetilde{K} \circ \widetilde{\phi})\left(e_{1}\right)=\lambda e_{1}, \quad(\widetilde{K} \circ \widetilde{\phi})\left(e_{2}\right)=\lambda e_{2}
\]

These equations show that \(\operatorname{dim} \mathfrak{g}^{1} \neq \operatorname{dim} \mathfrak{g}^{-1}\) and so \((\mathfrak{g},[\cdot, \cdot], \widetilde{\phi}, \widetilde{K})\) can not be an almost para-complex hom-Lie algebra in this case. But if we consider \((\mathfrak{g},[\cdot, \cdot], \widetilde{\phi}, \widetilde{K})\) with the sixth matrix of Proposition 3.7 , i.e., \(\widetilde{K}\left(e_{1}\right)=\lambda e_{1}\), \(\widetilde{K}\left(e_{2}\right)=\lambda e_{2}\), we get
\[
(\widetilde{K} \circ \widetilde{\phi})\left(e_{1}\right)=\lambda e_{1}+\lambda B e_{2}
\]
and
\[
(\widetilde{K} \circ \widetilde{\phi})\left(e_{2}\right)=-\lambda e_{2}
\]

If \(\lambda=1\), it is easy to see that \(f_{1}\) and \(f_{2}\) with condition \(c_{2}^{1}=0\) and \(c_{1}^{2}=\frac{B}{2} c_{1}^{1}\) satisfies in
\[
(\widetilde{K} \circ \widetilde{\phi})\left(f_{1}\right)=f_{1}, \quad(\widetilde{K} \circ \widetilde{\phi})\left(f_{2}\right)=-f_{2}
\]
and so \(\operatorname{dim} \mathfrak{g}^{1}=\operatorname{dim} \mathfrak{g}^{-1}\). Similarly, if \(\lambda=-1\), then \(f_{1}\) and \(f_{2}\) with condition \(c_{1}^{1}=0\) and \(c_{2}^{2}=\frac{B}{2} c_{2}^{1}\) satisfies in
\[
(\widetilde{K} \circ \widetilde{\phi})\left(f_{1}\right)=f_{1}, \quad(\widetilde{K} \circ \widetilde{\phi})\left(f_{2}\right)=-f_{2}
\]
and so \(\operatorname{dim} \mathfrak{g}^{1}=\operatorname{dim} \mathfrak{g}^{-1}\). Therefore \((\mathfrak{g},[],, \widetilde{\phi}, \widetilde{K})\) with \(\widetilde{K}\) given by the fifth matrix of the assertion is an almost para-complex hom-Lie algebra.

It is easy to see that
\[
N_{\widehat{K} \circ \widehat{\phi}}=N_{\bar{K} \circ \bar{\phi}}=N_{\widetilde{K} \circ \tilde{\phi}}=0,
\]
i.e., these structures are para-complex.

Proposition 3.9. All non-abelian para-Hermitian hom-Lie algebra of dimension 2 are as \(\left(\mathfrak{g},[\cdot, \cdot], \widehat{\phi}, \widehat{K}_{i},<,>_{i}\right), i=1,2,3,4\), where \(\widehat{\phi}\) is given by Proposition 3.3 and \(\widehat{K}_{i}\) and \(<,>_{i}\) have the following matrix presentations:
\[
\begin{gather*}
{\left[\widehat{K}_{1}\right]=\left[\begin{array}{cc}
\lambda & b \\
0 & -\lambda
\end{array}\right], \quad\left[\widehat{K}_{2}\right]=\left[\begin{array}{cc}
\lambda & 0 \\
c & -\lambda
\end{array}\right], \quad\left[\widehat{K}_{3}\right]=\left[\begin{array}{cc}
0 & d \\
\frac{1}{d} & 0
\end{array}\right], \quad\left[\widehat{K}_{4}\right]=\left[\begin{array}{cc}
a & d \\
h & -a
\end{array}\right],} \\
{\left[<,>_{1}\right]=\left[\begin{array}{cc}
-\lambda b<e_{1}, e_{2}>_{1} & <e_{1}, e_{2}>_{1} \\
<e_{1}, e_{2}>_{1} & 0
\end{array}\right],}  \tag{3.35}\\
{\left[<,>_{2}\right]=\left[\begin{array}{cc}
0 & <e_{1}, e_{2}>_{2} \\
<e_{1}, e_{2}>_{2} & c \lambda<e_{1}, e_{2}>_{2}
\end{array}\right],}  \tag{3.37}\\
{\left[<,>_{3}\right]=\left[\begin{array}{cc}
<e_{1}, e_{1}>_{3} & 0 \\
0 & -\frac{1}{d^{2}}<e_{1}, e_{1}>_{3}
\end{array}\right],}  \tag{3.38}\\
{\left[<,>_{4}\right]=\left[\begin{array}{cc}
<e_{1}, e_{1}>_{4} & -\frac{a}{d}<e_{1}, e_{1}>_{4} \\
-\frac{a}{d}<e_{1}, e_{1}>_{4} & -\frac{h}{d}<e_{1}, e_{1}>_{4}
\end{array}\right],} \tag{3.39}
\end{gather*}
\]
where \(a, d, h \neq 0, a^{2}+d h=1\) and \(\lambda= \pm 1\).
Proof. In Proposition 3.8, it is shown that \((\mathfrak{g},[\cdot, \cdot], \widehat{\phi})\) admits three different types of para-complex structures that we denoted them by \(\widehat{K}\). Here we must study condition (2.5) for them. We consider the first matrix, i.e., \([\widehat{K}]=\)
\(\left[\begin{array}{cc}\lambda & b \\ 0 & -\lambda\end{array}\right]\). From \(<(\widehat{K} \circ \widehat{\phi})\left(e_{2}\right),(\widehat{K} \circ \widehat{\phi})\left(e_{2}\right)>=-<e_{2}, e_{2}>\) we conclude \(<e_{2}, e_{2}>=0\). Also, \(<(\widehat{K} \circ \widehat{\phi})\left(e_{1}\right),(\widehat{K} \circ \widehat{\phi})\left(e_{1}\right)>=-<e_{1}, e_{1}>\) gives
\[
<e_{1}, e_{1}>_{1}=-\lambda b<e_{1}, e_{2}>_{1}
\]

These relations deduce condition
\[
<(\widehat{K} \circ \widehat{\phi})\left(e_{1}\right),(\widehat{K} \circ \widehat{\phi})\left(e_{2}\right)>=-<e_{1}, e_{2}>
\]

We denote these structures in the assertion with index 1 in the below.
We choose the second matrix i.e., \([\widehat{K}]=\left[\begin{array}{cc}\lambda & 0 \\ c & -\lambda\end{array}\right]\). The condition
\[
<(\widehat{K} \circ \widehat{\phi})\left(e_{1}\right),(\widehat{K} \circ \widehat{\phi})\left(e_{1}\right)>=-<e_{1}, e_{1}>
\]
implies \(<e_{1}, e_{1}>=0\). Also
\[
<(\widehat{K} \circ \widehat{\phi})\left(e_{2}\right),(\widehat{K} \circ \widehat{\phi})\left(e_{2}\right)>=-<e_{2}, e_{2}>
\]
deduces \(\left.\left\langle e_{2}, e_{2}\right\rangle=c \lambda<e_{1}, e_{2}\right\rangle\). Moreover the above conditions lead to
\[
<(\widehat{K} \circ \widehat{\phi})\left(e_{1}\right),(\widehat{K} \circ \widehat{\phi})\left(e_{2}\right)>=-<e_{1}, e_{2}>
\]

We denote these structures in the assertion with index 2 in the below.
For the third matrix i.e., \([\widehat{K}]=\left[\begin{array}{cc}a & d \\ h & -a\end{array}\right]\), we consider the following cases
Case 1. \(a \neq 0\). In this case \(<(\widehat{K} \circ \widehat{\phi})\left(e_{1}\right),(\widehat{K} \circ \widehat{\phi})\left(e_{1}\right)>=-<e_{1}, e_{1}>\) implies
\[
\begin{equation*}
<e_{1}, e_{2}>=-\frac{a^{2}+1}{2 a d}<e_{1}, e_{1}>-\frac{d}{2 a}<e_{2}, e_{2}>. \tag{3.40}
\end{equation*}
\]

The condition \(<(\widehat{K} \circ \widehat{\phi})\left(e_{2}\right),(\widehat{K} \circ \widehat{\phi})\left(e_{2}\right)>=-<e_{2}, e_{2}>\) gives
\[
\begin{equation*}
<e_{1}, e_{2}>=\frac{h}{2 a}<e_{1}, e_{1}>+\frac{a^{2}+1}{2 a h}<e_{2}, e_{2}>. \tag{3.41}
\end{equation*}
\]

From \(<(\widehat{K} \circ \widehat{\phi})\left(e_{1}\right),(\widehat{K} \circ \widehat{\phi})\left(e_{2}\right)>=-<e_{1}, e_{2}>\) we deduce
\[
\begin{equation*}
<e_{1}, e_{2}>=-\frac{a}{2 d}<e_{1}, e_{1}>+\frac{a}{2 h}<e_{2}, e_{2}>. \tag{3.42}
\end{equation*}
\]
(3.40) and (3.41) imply
\[
\begin{equation*}
<e_{2}, e_{2}>=-\frac{h}{d}<e_{1}, e_{1}> \tag{3.43}
\end{equation*}
\]

Setting (3.43) in (3.42), we obtain
\[
<e_{1}, e_{2}>=-\frac{a}{d}<e_{1}, e_{1}>
\]

We denote these structures in the assertion with index 3 in the below.

Case 2. \(a=0\). In the case \(h d=1\) and consequently the third matrix reduce to \([\widehat{K}]=\left[\begin{array}{ll}0 & d \\ \frac{1}{d} & 0\end{array}\right]\). Similar calculates give
\[
<e_{2}, e_{2}>=-\frac{1}{d^{2}}<e_{1}, e_{1}>, \quad<e_{1}, e_{2}>=0 .
\]

We denote these structures in the assertion with index 4 in the below.
Here we study para-Hermitian properties for \((\mathfrak{g},[\cdot, \cdot], \bar{\phi})\). In Proposition 3.8, it is shown that this hom-Lie algebra admits only para-complex structure \(\bar{K}\). Also in Proposition 3.3 we show that the pseudo-Riemannian metric \(\prec, \succ\) has the matrix presentation
\[
[\prec, \succ]=\left[\begin{array}{cc}
\prec e_{1}, e_{1} \succ & 0 \\
0 & \prec e_{2}, e_{2} \succ
\end{array}\right]
\]

The condition \(\prec(\bar{K} \circ \bar{\phi})\left(e_{1}\right),(\bar{K} \circ \bar{\phi})\left(e_{1}\right) \succ=-\prec e_{1}, e_{1} \succ\) implies \(\prec e_{1}, e_{1} \succ=0\). Also from \(\prec(\bar{K} \circ \bar{\phi})\left(e_{2}\right),(\bar{K} \circ \bar{\phi})\left(e_{2}\right) \succ=-\prec e_{2}, e_{2} \succ\) we deduce \(\prec e_{2}, e_{2} \succ=0\), and this is not possible. Since in this case pseudo-Riemannian metric is not defined.

Pseudo-Riemannian metric \(\ll, \gg\) in Proposition 3.3 has the matrix presentation
\[
[\ll, \gg]=\left[\begin{array}{cc}
\ll e_{1}, e_{1} \gg & -\frac{1}{B} \ll e_{2}, e_{2} \gg \\
-\frac{1}{B} \ll e_{2}, e_{2} \gg & \ll e_{2}, e_{2} \gg
\end{array}\right] .
\]

The condition
\[
\ll(\widetilde{K} \circ \widetilde{\phi})\left(e_{2}\right),(\widetilde{K} \circ \tilde{\phi})\left(e_{2}\right) \gg=-\ll e_{2}, e_{2} \gg
\]
implies \(\ll e_{2}, e_{2} \gg=0\). This means that in this case, pseudo-Riemannian metric is not defined. Therefore does not exist para-Hermitian structure on \(\left(\mathfrak{g},[],, \widetilde{\phi}_{\mathfrak{g}}\right)\).

Corollary 3.10. There not exists non-abelian para-Hermitian proper hom-Lie algebra of dimension 2.

Proposition 3.11. All non-abelian para-Kähler hom-Lie algebra of dimension 2 are as \(\left(\mathfrak{g},[\cdot, \cdot], \widehat{\phi}, \widehat{K}_{i},<,>_{i}\right), i=1,2,3,4\), where \(\widehat{\phi}\) is given by Proposition 3.3 and \(\widehat{K}_{i}\) and \(<,>_{i}\) have the following matrix presentations:
\[
\begin{gather*}
{\left[\widehat{K}_{1,1}\right]=\left[\begin{array}{cc}
1 & b \\
0 & -1
\end{array}\right],\left[<,>_{1,1}\right]=\left[\begin{array}{cc}
-b & 1 \\
1 & 0
\end{array}\right]}  \tag{3.44}\\
e_{2} \cdot e_{1}=e_{2} \cdot e_{2}=0, e_{1} \cdot e_{1}=-e_{1}-b e_{2}, e_{1} \cdot e_{2}=e_{2},  \tag{3.45}\\
{\left[\widehat{K}_{1,2}\right]=\left[\begin{array}{cc}
\lambda & 0 \\
0 & -\lambda
\end{array}\right], \quad\left[<,>_{1,2}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right]}  \tag{3.46}\\
e_{2} \cdot e_{1}=e_{2} \cdot e_{2}=0, e_{1} \cdot e_{1}=-e_{1}, e_{1} \cdot e_{2}=e_{2}, \tag{3.47}
\end{gather*}
\]
\[
\begin{gather*}
{\left[\widehat{K}_{2}\right]=\left\{\begin{array}{c}
{\left[\begin{array}{cc}
\lambda & 0 \\
c & -\lambda
\end{array}\right], \quad\left[<,>_{2}\right]=\left[\begin{array}{cc}
0 & 1 \\
1 & \lambda c
\end{array}\right],} \\
e_{1} \cdot e_{1}=-e_{1}, \\
e_{1} \cdot e_{2}=-\lambda c e_{1}+e_{2}, \quad e_{2} \cdot e_{1}=-\lambda c e_{1}, \\
e_{2} \cdot e_{2}=-c^{2} e_{1}+\lambda c e_{2},
\end{array}\right.}  \tag{3.48}\\
\left\{\begin{array}{r}
{\left[\widehat{K}_{3}\right]=\left[\begin{array}{ll}
0 & d \\
\frac{1}{d} & 0
\end{array}\right], \quad\left[<,>_{3}\right]=\left[\begin{array}{cc}
<e_{1}, e_{1}>_{3} & 0 \\
0 & -\frac{\left\langle e_{1}, e_{1}>_{3}\right.}{d^{2}}
\end{array}\right],} \\
e_{2} \cdot e_{1}=-e_{2}, e_{1} \cdot e_{1}=e_{1} \cdot e_{2}=0, \\
e_{2} \cdot e_{2}=-\frac{1}{d^{2}} e_{1},
\end{array}\right.  \tag{3.49}\\
{\left[\begin{array}{r}
{\left[\begin{array}{rr}
a & d \\
h & -a
\end{array}\right], \begin{array}{r}
{\left[<,>_{4}\right]=\left[\begin{array}{cc}
-\frac{d}{a} & 1 \\
1 & \frac{h}{a}
\end{array}\right], \quad e_{1} \cdot e_{1}=-a^{2} e_{1}-a d e_{2}} \\
e_{1} \cdot e_{2}=-a h e_{1}+a^{2} e_{2},
\end{array}} \\
e_{2} \cdot e_{1}=-a h e_{1}+\left(a_{2}-1\right) e_{2}
\end{array}\right.}  \tag{3.50}\\
=-h^{2} e_{1}+a h e_{2},
\end{gather*}
\]
where \(a, d \neq 0, a^{2}+\lambda a d=1\) and \(\lambda= \pm 1\).
Proof. In Proposition 3.9, we presented all two-dimensional para-Hermitian hom-Lie algebras, that are non-proper. Now we study the para-Kählerian properties of them. In Proposition (3.4), we obtain the hom-Levi-Civita product for the pseudo-Riemannian hom-Lie algebra \((\mathfrak{g},[\cdot, \cdot], \widehat{\phi})\). Now we must check that one of the structures determined in Proposition 3.9 is compatible with these products. We consider two cases as follows:

Case 1. \(<e_{1}, e_{2}>=0\).

In this case, we can consider \(<,>_{3}\), because \(<,>_{i}, i=1,2,4\), are not pseudoRiemannian metrics, when \(<e_{1}, e_{2}>_{i}=0, i=1,2,4\). In this case, the product (3.6) reduce to
\[
\begin{equation*}
e_{1} \cdot e_{1}=e_{1} \cdot e_{2}=0, \quad e_{2} \cdot e_{1}=-e_{2}, \quad e_{2} \cdot e_{2}=-\frac{1}{d^{2}} e_{1} \tag{3.51}
\end{equation*}
\]

It is easy to see that \((2.7)\) is held for \(\left(\mathfrak{g},[],, \widehat{\phi}, \widehat{K}_{3},<,>_{3}\right)\) with the above product. So this structure is para-Kähler.

Case 2. \(<e_{1}, e_{2}>\neq 0\).
In this case, at first we consider \(\widehat{K}_{1}\) and \(<,>_{1}\) with the hom-Levi-Civita product given by (3.7)- (3.10). It is easy to see that
\[
\widehat{K}_{1}\left(e_{2} \cdot \widehat{K}_{1}\left(e_{1}\right)\right)=\frac{\operatorname{det}\left[<,>_{1}\right]+<e_{1}, e_{2}>_{1}}{\operatorname{det}\left[<,>_{1}\right]} e_{2},
\]
and so \(e_{2} \cdot e_{1}=\widehat{K}_{1}\left(e_{2} \cdot \widehat{K}_{1}\left(e_{1}\right)\right)\) if and only if \(<e_{1}, e_{2}>_{1}=1\), which gives \(\operatorname{det}\left[<,>_{1}\right]=-1\). Thus (3.7)- (3.10) reduce to
\[
e_{2} \cdot e_{1}=e_{2} \cdot e_{2}=0, \quad e_{1} \cdot e_{1}=-e_{1}-\lambda b e_{2}, \quad e_{1} \cdot e_{2}=e_{2}
\]

Also, easily we can check that
\[
e_{2} \cdot e_{2}=\widehat{K}_{1}\left(e_{2} \cdot \widehat{K}_{1}\left(e_{2}\right)\right), \quad e_{1} \cdot e_{2}=\widehat{K}_{1}\left(e_{1} \cdot \widehat{K}_{1}\left(e_{2}\right)\right) .
\]

Moreover, we can see that \(e_{1} \cdot e_{1}=\widehat{K}_{1}\left(e_{1} \cdot \widehat{K}_{1}\left(e_{1}\right)\right)\) if and only if \(b=0\) or \(\lambda=1\). Therefore we get the para-Kähler structures (3.44) and (3.46). Now, we consider \(\widehat{K}_{2}\) and \(<,>_{2}\) with the hom-Levi-Civita product given by (3.7)(3.10). It is easy to see that
\[
\widehat{K}_{2}\left(e_{1} \cdot \widehat{K}_{1}\left(e_{2}\right)\right)=\lambda c \frac{\left(<e_{1}, e_{2}>_{2}\right)^{2}}{\operatorname{det}\left[<,>_{2}\right]} e_{1}-\frac{<e_{1}, e_{2}>_{2}}{\operatorname{det}\left[<,>_{2}\right]} e_{2},
\]
and so \(e_{1} \cdot e_{2}=\widehat{K}_{2}\left(e_{1} \cdot \widehat{K}_{2}\left(e_{2}\right)\right)\) if and only if \(<e_{1}, e_{2}>_{2}=1\), which gives \(\operatorname{det}\left[<,>_{2}\right]=-1\). Thus (3.7)- (3.10) reduce to
\(e_{1} \cdot e_{1}=-e_{1}, \quad e_{1} \cdot e_{2}=-\lambda c e_{1}+e_{2}, \quad e_{2} \cdot e_{1}=-\lambda c e_{1}, \quad e_{2} \cdot e_{2}=-c^{2} e_{1}+\lambda c e_{2}\).
Direct calculations show that \(e_{1} \cdot e_{1}=\widehat{K}_{2}\left(e_{1} \cdot \widehat{K}_{2}\left(e_{1}\right)\right), e_{2} \cdot e_{2}=\widehat{K}_{2}\left(e_{2} \cdot \widehat{K}_{2}\left(e_{2}\right)\right)\) and \(e_{2} \cdot e_{1}=\widehat{K}_{2}\left(e_{2} \cdot \widehat{K}_{2}\left(e_{1}\right)\right)\). Finally we consider \(\widehat{K}_{4}\) and \(<,>_{4}\) given by Proposition 3.9. In this case, (3.7)-(3.10) reduce to
\[
\begin{align*}
& e_{1} \cdot e_{1}=\frac{a^{2}<e_{1}, e_{1}>^{2}}{d^{2} \operatorname{det}[<,>]} e_{1}+\frac{a<e_{1}, e_{1}>^{2}}{d \operatorname{det}[<,>]} e_{2},  \tag{3.52}\\
& e_{1} \cdot e_{2}=\frac{-h<e_{1}, e_{1}>}{d \operatorname{det}[<,>]} e_{1}+\frac{a<e_{1}, e_{1}>}{d \operatorname{det}[<,>]} e_{2},  \tag{3.53}\\
& e_{2} \cdot e_{1}=\frac{-h<e_{1}, e_{1}>}{d \operatorname{det}[<,>]} e_{1}-\frac{\operatorname{det}[<,>]-\frac{a}{d}<e_{1}, e_{1}>}{\operatorname{det}[<,>]} e_{2},  \tag{3.54}\\
& e_{2} \cdot e_{2}=-\frac{h^{2}<e_{1}, e_{1}>}{a d \operatorname{det}[<,>]} e_{1}+\frac{h<e_{1}, e_{1}>}{d \operatorname{det}[<,>]} e_{2} . \tag{3.55}
\end{align*}
\]

Direct calculations together \(a^{2}+h d=1\) give
\[
K\left(e_{1} \cdot k\left(e_{1}\right)\right)=\frac{a^{2}<e_{1}, e_{1}>^{2}}{d^{2} \operatorname{det}[<,>]} e_{1}-\frac{<e_{1}, e_{1}>}{\operatorname{det}[<,>]} e_{2} .
\]

So, condition \(e_{1} \cdot e_{1}=K\left(e_{1} \cdot K\left(e_{1}\right)\right)\) gives \(<e_{1}, e_{1}>=-\frac{d}{a}\). In this case, \(\operatorname{det}\left[<,>_{4}\right]=-\frac{1}{a^{2}}\) and so \(\left[<,>_{4}\right]\) and the Levi-Civita product reduce to (3.50). Using it we get also
\[
\begin{gathered}
K\left(e_{1} \cdot K\left(e_{2}\right)\right)=-a h e_{1}+a^{2} e_{2}=e_{1} \cdot e_{2} \\
K\left(e_{2} \cdot K\left(e_{1}\right)\right)=-a h e_{1}-h d e_{2}=-a h e_{1}+\left(a^{2}-1\right) e_{2}=e_{2} \cdot e_{1} \\
K\left(e_{2} \cdot K\left(e_{2}\right)\right)=-h^{2} e_{1}+a h e_{2}=e_{2} \cdot e_{2}
\end{gathered}
\]

So (2.7) holds.
From Corollary 3.10, we deduce the following
Corollary 3.12. There exists no non-abelian para-Kähler proper hom-Lie algebra of dimension 2.

\section*{References}
1. F. Ammar, Z. Ejbehi and A. Makhlouf, Cohomology and deformations of Hom-algebras, J. Lie Theory, 21(4) (2011), 813-836.
2. A. Andrada, Complex product structures on 6-dimensional nilpotent Lie algebras, Forum Mathematicum, 20(2) (2008), 285-315.
3. A. Andrada, M.L. Barberis and I. Dotti, Classification of abelian complex structures on 6-dimensional Lie algebras, J. London Math. Soc., 83 (2011), 232-255.
4. A. Andrada, M.L. Barberis and I. Dotti, Abelian Hermitian geometry, Diff. Geom. Appl., 30(5) (2012), 509-519.
5. S. Benayadi, M. Boucetta On para-Kähler and hyper-para-Kähler Lie algebras, J. Algebra, 436 (2015), 61-101.
6. G. Calvaruso and A. Fino, Five-dimensional K-contact Lie algebras, Monatshefte für Mathematik, 167(1) (2012), 35-59.
7. Y. Cheng and Y. Su, (Co)homology and universal central extension of Hom-Leibniz algebras, Acta Math. Sin. (Engl. Ser.), 27(5) (2011), 813-830.
8. J. Hartwig, D. Larsson and S. Silvestrov, Deformations of Lie algebras using \(\sigma\) derivations, J. Algebra, 295 (2006), 314-361.
9. N . Hu, \(q\)-Witt algebras, \(q\)-Lie algebras, \(q\)-holomorph structure and representations, Algebra Colloq., 6(1) (1999), 51-70.
10. S. Ivanov, S, Zamkovoy, Parahermitian and paraquaternionic manifolds, Differl. Geom. Appl., 23(2) (2005), 205-234.
11. D. Larsson and S. Silvestrov, Quasi-hom-Lie algebras, central extensions and 2-cocyclelike identities, J. Algebra, 288 (2005), 321-344.
12. E. Peyghan and L. Nourmohammadifar, Para-Kähler hom-Lie algebras, Journal of Algebra and Its Applications, 18(3) (2019), 1950044.
13. Y. Sheng, Representations of hom-Lie algebras, Algebr. Represent. Theor., 15 (2012), 1081-1098.
14. Y. Sheng and C. Bai, A new approach to hom-Lie bialgebras, J. Algebra, 399 (2014), 232-250.
15. D. Yau, Hom-algebras and homology, J. Lie Theory, 19 (2009), 409-421.

Received: 12.11.2022
Accepted: 26.12.2022```

