In this paper, we find necessary and sufficient conditions under which the infinite series metric and Randers metric on a manifold M of dimen sion n >3 be projectively related.
1. H. Akbar-Zadeh, Initiation to Global Finslerian Geometry, North-Holland Mathematical Library, 2006.
2. S. B´acs´o and M. Matsumoto, Projective changes between Finsler spaces with (α, β)- metrics, Tensor, N.S. 55(1994), 252-257.
3. S. B´acs´o and M. Matsumoto, On Finsler spaces of Douglas type, A generalization of notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
4. L. Berwald, On Finsler and Cartan geometries, III. Two-dimensional Finsler spaceswith rectilinear extremals, Ann. Math. 42(20) (1941), 84-112. 3(1997), 161-204.
5. G. Chen and X. Cheng, A class of Finsler metrics projectively related to a Randers metric, Publ. Math. Debrecen. 5211(2012), In Print.
6. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169(2009), 317-340.
7. X. Chen and Z. Shen, Randers metrics with special curvature properties, Osaka J. of Math, 40(2003), 87-101.
8. N. Cui and Y. B. Shen, Projective change between two classes of (α, β)-metrics, Diff. Geom. Appl. 27(2009), 566-573.
9. M. Hashiguchi and Y. Ichijy¯o, Randers spaces with rectilinear geodesics, Rep. Fac. Sci. Kagoshima Univ. (Math. Phys. Chen). 13(1980) 33-40.
10. M. Hashiguchi and Y. Ichijy¯o, On Some special (α, β)-metrics, Rep. Fac. Sci., Kagoshima Univ. 8(1975), 39-46.
11. I-Y. Lee and M-H Lee, On weakly-Berwald spaces of special (α, β)-metrics, Bull. Korean. Math. Soc. 43(2) (2006), 425-441.
12. I-Y. Lee and H-S. Park, Finsler spaces with infinite series (α, β)-metric, J. Korean Math. Soc. 41(3) (2004), 567-589.
13. M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S. 24(1972), 29-37.
14. M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces, Tensor N.S. 34(1980), 303-315.
15. M. Matsumoto, A special class of locally Minkowski spaces with (α, β)-metric and conformally flat Kropina spaces, Tensor, N.S. 50(1991), 202-207.
16. X. Mo, On the non-Riemannian quantity H of a Finsler metric, Diff. Geom. Appl. 27(2009) 7-14.
17. B. Najafi, Z. Shen and A. Tayebi, On a projective class of Finsler metrics, Publ. Math. Debrecen. 70(2007), 211-219.
18. B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
19. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev. 59(1941), 195-199.
20. A. Rapcs´ak, Uber die bahntreuen Abbildungen metrisher R¨aume ¨ , Publ. Math. Debrecen, 8(1961), 285-290.
21. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
22. Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Advances. Math. 128(1997), 306-328.
23. Y. B. Shen and Y. Yu, On projectively related Randers metric, Inter. J. Math. 19(5) (2008), 503-520.
24. Y. B. Shen and L. Zhao, Some projectively flat (α, β)-metrics, Science in China, Series A: Math. 49(6), 838-851.
Kamelaei, F. (2022). On projectively related (α,β)-metrics. Journal of Finsler Geometry and its Applications, 3(2), 64-77. doi: 10.22098/jfga.2022.11915.1078
MLA
Farzaneh Kamelaei. "On projectively related (α,β)-metrics", Journal of Finsler Geometry and its Applications, 3, 2, 2022, 64-77. doi: 10.22098/jfga.2022.11915.1078
HARVARD
Kamelaei, F. (2022). 'On projectively related (α,β)-metrics', Journal of Finsler Geometry and its Applications, 3(2), pp. 64-77. doi: 10.22098/jfga.2022.11915.1078
VANCOUVER
Kamelaei, F. On projectively related (α,β)-metrics. Journal of Finsler Geometry and its Applications, 2022; 3(2): 64-77. doi: 10.22098/jfga.2022.11915.1078