On projectively related (α,β)-metrics

Document Type : Original Article

Author

Department of Mathematics, Karaj Branch, Islamic Azad University Karaj, Iran

Abstract

In this paper, we find necessary and sufficient conditions under
which the infinite series metric and Randers metric on a manifold M of dimen
sion n >3 be projectively related.

Keywords


  • 1. H. Akbar-Zadeh, Initiation to Global Finslerian Geometry, North-Holland Mathematical
    Library, 2006.
  • 2. S. B´acs´o and M. Matsumoto, Projective changes between Finsler spaces with (α, β)-
    metrics, Tensor, N.S. 55(1994), 252-257.
  • 3. S. B´acs´o and M. Matsumoto, On Finsler spaces of Douglas type, A generalization of
    notion of Berwald space, Publ. Math. Debrecen. 51(1997), 385-406.
  • 4. L. Berwald, On Finsler and Cartan geometries, III. Two-dimensional Finsler spaceswith
    rectilinear extremals, Ann. Math. 42(20) (1941), 84-112. 3(1997), 161-204.
  • 5. G. Chen and X. Cheng, A class of Finsler metrics projectively related to a Randers
    metric, Publ. Math. Debrecen. 5211(2012), In Print.
  • 6. X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J.
    Math. 169(2009), 317-340.
  • 7. X. Chen and Z. Shen, Randers metrics with special curvature properties, Osaka J. of
    Math, 40(2003), 87-101.
  • 8. N. Cui and Y. B. Shen, Projective change between two classes of (α, β)-metrics, Diff.
    Geom. Appl. 27(2009), 566-573.
  • 9. M. Hashiguchi and Y. Ichijy¯o, Randers spaces with rectilinear geodesics, Rep. Fac. Sci.
    Kagoshima Univ. (Math. Phys. Chen). 13(1980) 33-40.
  • 10. M. Hashiguchi and Y. Ichijy¯o, On Some special (α, β)-metrics, Rep. Fac. Sci., Kagoshima
    Univ. 8(1975), 39-46.
  • 11. I-Y. Lee and M-H Lee, On weakly-Berwald spaces of special (α, β)-metrics, Bull. Korean.
    Math. Soc. 43(2) (2006), 425-441.
  • 12. I-Y. Lee and H-S. Park, Finsler spaces with infinite series (α, β)-metric, J. Korean Math.
    Soc. 41(3) (2004), 567-589.
  • 13. M. Matsumoto, On C-reducible Finsler spaces, Tensor, N. S. 24(1972), 29-37.
  • 14. M. Matsumoto, Projective changes of Finsler metrics and projectively flat Finsler spaces,
    Tensor N.S. 34(1980), 303-315.
  • 15. M. Matsumoto, A special class of locally Minkowski spaces with (α, β)-metric and conformally flat Kropina spaces, Tensor, N.S. 50(1991), 202-207.
  • 16. X. Mo, On the non-Riemannian quantity H of a Finsler metric, Diff. Geom. Appl.
    27(2009) 7-14.
  • 17. B. Najafi, Z. Shen and A. Tayebi, On a projective class of Finsler metrics, Publ. Math.
    Debrecen. 70(2007), 211-219.
  • 18. B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag curvature with special
    non-Riemannian curvature properties, Geom. Dedicata. 131(2008), 87-97.
  • 19. G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev.
    59(1941), 195-199.
  • 20. A. Rapcs´ak, Uber die bahntreuen Abbildungen metrisher R¨aume ¨ , Publ. Math. Debrecen,
    8(1961), 285-290.
  • 21. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
  • 22. Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Advances. Math. 128(1997), 306-328.
  • 23. Y. B. Shen and Y. Yu, On projectively related Randers metric, Inter. J. Math. 19(5)
    (2008), 503-520.
  • 24. Y. B. Shen and L. Zhao, Some projectively flat (α, β)-metrics, Science in China, Series
    A: Math. 49(6), 838-851.
  • 25. Z. Szab´o, Positive definite Berwald spaces, Tensor, N.S. 35(1981), 25-39.
  • 26. D. Tang, On the non-Riemannian quantity H in Finsler geometry, Diff. Geom. Appl.
    29(2011), 207-213.
  • 27. Y. Yu and Y. You, Projective equivalence between an (α, β)-metric and a Randers metric,
    Publ. Math. Debrecen, 5351(2012), In Print.
  • 28. M. Zohrehvand and M. M. Rezaii, On projectively related of two special classes of (α, β)-
    metrics, Diff. Geom. Appl. 29(5)(2011), 660-669.