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Abstract. In this paper, we find necessary and sufficient conditions under

which the infinite series metric and Randers metric on a manifold M of dimen-

sion n ≥ 3 be projectively related.
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1. Introduction

For a Finsler metric F = F (x, y), its geodesics curves are characterized by

the system of differential equations c̈i + 2Gi(ċ) = 0, where the local functions

Gi = Gi(x, y) are called the spray coefficients and given by following

Gi =
1

4
gil

{ ∂2[F 2]

∂xk∂yl
yk − ∂[F 2]

∂xl

}
, y ∈ TxM.

Two Finsler metrics F and F̄ on a manifold M are called projectively related

if any geodesic of the first is also geodesic for the second and the other way

around. Hereby, there is a scalar function P (x, y) defined on TM0 such that

Gi = Ḡi + Pyi,

where Gi and Ḡi are the geodesic spray coefficients of F and F̄ , respectively.

The problem of projectively related Finsler metrics is quite old in geometry

and its origin is formulated in Hilberts Fourth Problem: determine the metrics

on an open subset in Rn, whose geodesics are straight lines. Projectively flat

Finsler metrics on a convex domain in Rn are regular solutions to Hilbert’s

Fourth Problem. A Finsler metric F on an open subset U ⊂ Rn is called
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projectively flat if all geodesics are straight in U . In this case, F and the Eu-

clidean metric on U are projectively related [24]. The study of projectively

related Finsler metrics was initiated by Berwald and his studies mainly con-

cern the 2-dimensional Finsler spaces [4]. Further substantial contributions on

this topic are from Rapcsák [20], Szabó [25] and Bácsó-Matsumoto [2][3][14].

The problem of projectively related Finsler metrics is strongly connected to

projectively related sprays, as Shen pointed out in [21].

An (α, β)-metric is a Finsler metric on a manifold M defined by F := αϕ(s),

where s = β/α, ϕ = ϕ(s) is a C∞ function on the (−b0, b0) with certain

regularity, α =
√
aijyiyj is a Riemannian metric and β = bi(x)y

i is a 1-form

on M . Randers metrics F = α+ β are the simplest (α, β)-metrics which were

first introduced by physicist Randers from the standpoint of general relativity

[19].

In [23], Shen-Yu studied projectively related Randers metrics. They show

that two Randers metrics are pointwise projectively related if and only if they

have the same Douglas tensors and the corresponding Riemannian metrics are

projectively related. In [8], Cui-Shen find necessary and sufficient conditions

under which a Berwald metric and a Randers metric are projectively related.

Then Zohrehvand-Rezaii found necessary and sufficient conditions under which

a Matsumoto metric and a Randers metric are projectively related [28]. Re-

cently, Chen-Cheng and Yu-You independently consider other Finsler metrics

projectively related to a Randers metric [5][27].

Let us consider the r-th series (α, β)-metric

F = β
r∑

k=0

(α
β

)k

,

where we assume α < β. If r = 1, then we get the Randers metric F = α+ β.

If r = 2, then we have F = α + β + α2

β , which is one of the parallel Berwald

metric in the sense of Matsumoto [15]. If r = ∞, then we get infinite series

metric F = β2

β−α . We have not at all investigated the geometrical meaning

about the infinite series metric by this time. But this metric is remarkable as

the difference between a Randers metric F = α + β and a Matsumoto metric

F = α2

α−β .

In this paper, first we prove the following.

Theorem 1.1. Let F = β2

β−α and F̄ = ᾱ + β̄ be two (α, β)-metrics on a

manifold M of dimension n ≥ 3, where α and ᾱ are two Riemannian metrics,

β and β̄ are two nonzero one forms with b2 ̸= 10. Then they have the same

Douglas tensor if and only if F and F̄ are Douglas metrics.

Then, we find equations to characterize projective change between two spe-

cial classes of (α, β)-metrics, infinite series metric F = β2

β−α and Randers metric
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F̄ = ᾱ + β̄ on a manifold M of dimension n ≥ 3, where α and ᾱ are two Rie-

mannian metrics, β and β̄ are two nonzero one forms. More precisely, we prove

the following.

Theorem 1.2. Let F = β2

β−α and F̄ = ᾱ + β̄ be two (α, β)-metrics on a

manifold M of dimension n ≥ 3, where α and ᾱ are two Riemannian metrics,

β and β̄ are two nonzero one forms with b2 ̸= 10. Then F is projectively related

to F̄ if and only if the following equations hold

: (a) α is projectively related to ᾱ;

: (b) β is parallel with respect to α;

: (c) β̄ is closed.

In the sequel, we use quantities with a bar to denote the corresponding

quantities of the metric F̄ .

For a vector y ∈ TxM0, define the E-curvature by Ey = Eijdx
i ⊗ dxj |p :

TpM ⊗ TpM → R, where Eij(x, y) := 1
2

∂2

∂yi∂yj

[
∂Gm

∂ym

]
. We call Ey the mean

Berwald curvature. The Finsler metrics with vanishing E-curvature are called

weakly Berwald metrics. In this paper, we consider a Randers metric which is

projectively related with a weakly Berwald infinite series metric and prove the

following.

Corollary 1.3. Let F = β2

β−α and F̄ = ᾱ + β̄ be two (α, β)-metrics on a

manifold M of dimension n ≥ 3, where α and ᾱ are two Riemannian metrics,

β and β̄ are two nonzero one forms. Suppose that F is a weakly Berwald metric.

Then F is projectively related to F̄ if and only if the following equations hold

: (a) α is projectively related to ᾱ;

: (b) β is closed;

: (c) β̄ is closed.

In [1], Akbar-Zadeh considered a non-Riemannian quantity Hy = Hijdx
i ⊗

dxj which is obtained from the mean Berwald curvature by the covariant hor-

izontal differentiation along geodesics. More precisely, Hij := Eij|mym, where

“|” denotes the horizontal covariant differentiation with respect to the Berwald

connection. In the class of Finsler metrics of scalar flag curvature, vanishing

this quantity results that the Finsler metric is of constant flag curvature and

this fact clarifies its geometric meaning [16][18][26]. In continue, we consider a

infinite series metric F = β2

β−α which are projectively related with a Randers

metric F̄ = ᾱ+ β̄ satisfies H̄ = 0 and prove the following.

Corollary 1.4. Let F = β2

β−α and F̄ = ᾱ + β̄ be projectively related (α, β)-

metrics on a manifold M of dimension n ≥ 3, where α and ᾱ are two Rie-

mannian metrics, β and β̄ are two nonzero one forms with b2 ̸= 10. Suppose

that F̄ satisfies H̄ = 0. Then F and F̄ reduce to Berwald metrics.
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Any geometric object which is identical between two projectively related

metrics is called a projective invariant. There are some well-known projective

invariants of Finsler metrics namely, Douglas curvature [3] and generalized

Douglas-Weyl curvature [17]. Define Dy : TxM ⊗ TxM ⊗ TxM → TxM by

Dy(u, v, w) := Di
jkl(y)u

ivjwk ∂
∂xi |x, where

Di
j kl :=

∂3

∂yj∂yk∂yl

[
Gi − 1

n+ 1

∂Gm

∂ym
yi
]
.

We call D := {Dy}y∈TM0 the Douglas curvature. A Finsler metric with D = 0

is called a Douglas metric. It is remarkable that, the notion of Douglas met-

rics was proposed by Bácsó-Matsumoto as a generalization of Berwald metrics

[3]. Finally, we consider the infinite series metrics and Randers metrics with

vanishing Douglas curvature and prove the following.

Corollary 1.5. Let F = β2

β−α and F̄ = ᾱ + β̄ be two (α, β)-metrics on a

manifold M of dimension n ≥ 3, where α and ᾱ are two Riemannian metrics,

β and β̄ are two nonzero one forms with b2 ̸= 10. Then F is projectively related

to F̄ if and only if they are Douglas metrics and α is projectively related to ᾱ.

2. Preliminary

General (α, β)-metrics were first studied by Matsumoto in 1972 as a direct

generalization of Randers metrics [13]. An (α, β)-metric is a Finsler metric on a

manifold M defined by F := αϕ(s), where s = β/α, ϕ = ϕ(s) is a C∞ function

on the (−b0, b0) with certain regularity, α =
√

aijyiyj is a Riemannian metric

and β = bi(x)y
i is a 1-form on M . For an (α, β)-metric, let us define bi|j by

bi|jθ
j := dbi − bjθ

j
i ,

where θi := dxi and θji := Γj
ikdx

k denote the Levi-Civita connection form of α.

Let

rij :=
1

2
(bi|j + bj|i), sij :=

1

2
(bi|j − bj|i).

Clearly, β is closed if and only if sij = 0. An (α, β)-metric is said to be trivial

if rij = sij = 0. Put

ri0 := rijy
j , r00 := rijy

iyj , rj := birij ,

si0 := sijy
j , sj := bisij ,

r0 := rjy
j , s0 := sjy

j .

For an (α, β)-metric F = αϕ(s), s = β
α , if we put

Q :=
ϕ′

ϕ− sϕ′
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then

Q′ =
ϕϕ′′

(ϕ− sϕ′)2
,

Q′′ =
ϕ′ϕ′′ + ϕϕ′′′

(ϕ− sϕ′)2
+

2sϕϕ′′2

(ϕ− sϕ′)3
.

Now, let ϕ = ϕ(s) be a positive C∞ function on (−b0, b0). For a number

b ∈ [0, b0), let

∆ := 1 + sQ+ (b2 − s2)Q′. (2.1)

Let Gi = Gi(x, y) and Ḡi
α = Ḡi

α(x, y) denote the coefficients of F and α

respectively in the same coordinate system. By definition, we have

Gi = Gi
α + αQsi0 + (−2Qαs0 + r00)(Θ

yi

α
+Ψbi), (2.2)

where

Θ :=
Q− sQ′

2∆
=

ϕϕ′ − s(ϕϕ′′ + ϕ′ϕ′)

2ϕ
[
(ϕ− sϕ′) + (b2 − s2)ϕ′′

]
Ψ :=

Q′

2∆
=

1

2

ϕ′′

(ϕ− sϕ′) + (b2 − s2)ϕ′′ .

By (2.2), it follows that every trivial (α, β)-metric satisfies Gi = Gi
α and then

it reduces to a Berwald metric.

3. Proof of Theorem 1.1

For an infinite series metric F = β2

β−α , the following are hold

ϕ =
s2

s− 1
, ϕ− sϕ′ =

s2

(s− 1)2
.

Then

Q =
s− 2

s
,

Θ =
s(s− 4)

2[s2(s− 1) + 2(b2 − s2)]

Ψ =
1

s2(s− 1) + 2(b2 − s2)
. (3.1)

For a Randers metric F̄ = ᾱ+ β̄, we have

Q̄ := 1,

Θ̄ :=
1

2(1 + s)
,

Ψ̄ := 0. (3.2)
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Let

Di
j kl :=

∂3

∂yj∂yk∂yl
(
Gi − 1

n+ 1

∂Gm

∂ym
yi
)
. (3.3)

It is easy to verify that D := Di
j kldx

j⊗∂i⊗dxk⊗dxl is a well-defined tensor on

slit tangent bundle TM0. We call D the Douglas tensor. The Douglas tensor D
is a non-Riemannian projective invariant, namely, if two Finsler metrics F and

F̄ are projectively equivalent, Gi = Ḡi + Pyi, where P = P (x, y) is positively

y-homogeneous of degree one, then the Douglas tensor of F is same as that of

F̄ . Finsler metrics with vanishing Douglas tensor are called Douglas metrics.

For an (α, β)-metric , the Douglas tensor is determined by

Di
j kl :=

∂3

∂yj∂yk∂yl
(
T i − 1

n+ 1

∂Tm

∂ym
yi
)
, (3.4)

where

T i := αQsi0 +Ψ(r00 − 2αQs0)b
i, (3.5)

and

Tm
ym = Q′s0+Ψ′α−1(b2−s2)(r00−2αQs0)+2Ψ

[
r0−Q′(b2−s2)s0−Qss0

]
. (3.6)

Now, let F and F̄ be two (α, β)-metrics which have the same Douglas tensor,

i.e., Di
jkl = D̄i

jkl. From (3.3) and (3.4), we have

∂3

∂yi∂yj∂yk

[
T i − T̄ i − 1

n+ 1
(Tm

ym − T̄m
ym)yi

]
= 0. (3.7)

Then there exists a class of scalar function Hi
jk := Hi

jk(x) such that

T i − T̄ i − 1

n+ 1
(Tm

ym − T̄m
ym)yi = Hi

00, (3.8)

where Hi
00 = Hi

jk(x)y
iyj , T i and Tm

ym are given by (3.5) and (3.6) respectively.

In this paper, we assume that λ := 1
n+1 .

Proof of Theorem 1.1: Since the sufficiency is obvious, then we just need

to prove the necessity. If F and F̄ have the same Douglas tensor, then (3.8)

holds. Plugging (3.1) and (3.2) into (3.8) implies that∑8
j=1 A

i
jα

j∑6
j=0 Bjαj

− ᾱs̄i0 = Hi
00, (3.9)

where

Ai
1 := β7si0 − 3λβ5r00y

i

Ai
2 := 6λβ5s0y

i − 8β6si0 + 6λβ4r00y
i

Ai
3 := 21β5si0 + β4r00b

i + 10λβ4s0y
i + 3λb2β3r00y

i − 2λβ4r0y
i

Ai
4 := 6λβ2(5βs0 − b2βs0 + βr0 − b2r00)y

i − 2(9− 2b2)β4si0

− β3(2βs0 + 3r00)b
i
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Ai
5 := 24λb2β2s0y

i − 20b2β2si0 + 10β3s0b
i

Ai
6 := −28λb2βs0y

i − 4λb2βr0y
i + 24b2β2si0 − 12β2s0b

i + 2b2βr00b
i

Ai
7 := 4b2β(b2si0 − s0b

i)

Ai
8 := −8b2(b2si0 − s0b

i) (3.10)

and

B0 := β7

B1 := −6β6

B2 := 9β5

B3 := 4b2β4

B4 := −12b2β3

B5 := 0

B6 := 4b4β. (3.11)

Then (3.9) is equal to following

8∑
j=1

Ai
jα

j = (Hi
00 + ᾱs̄i0)

6∑
j=0

Bjα
j . (3.12)

Replacing yi by −yi in (3.12) yields

3∑
j=0

Ai
(2j+1)α

2j+1 −
4∑

j=1

Ai
(2j)α

2j = (Hi
00 − ᾱs̄i0)

1∑
j=0

B(2j+1)α
2j+1

−(Hi
00 − ᾱs̄i0)

3∑
j=0

B(2j)α
2j . (3.13)

[(3.12) + (3.13)]× α implies that

4∑
k=1

Ai
(2k−1)α

2k = Hi
00(

2∑
j=1

B(2j−1)α
2j) + αᾱs̄i0(

3∑
j=0

B(2j)α
2j). (3.14)

Then

4∑
k=1

Ai
(2k)α

2k = Hi
00(

3∑
j=0

B(2j)α
2j) + αᾱs̄i0(

2∑
j=1

B(2j−1)α
2(j−1)). (3.15)

We split the proof into two cases:

case(1): If ᾱ ̸= µ(x)α, then from (3.15) we see that αᾱs̄i0 is a homogeneous

polynomial with respect to y. Therefore s̄i0 = 0, i.e., β̄ is closed.
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case(2): If ᾱ = µ(x)α, then (3.14) and (3.15) reduce to following

4∑
k=1

Ai
(2k−1)α

2k = Hi
00(

2∑
j=1

B(2j−1)α
2j) + µα2s̄i0(

3∑
j=0

B(2j)α
2j) (3.16)

and

4∑
k=1

Ai
(2k)α

2k = Hi
00(

3∑
j=0

B(2j)α
2j) + µα2s̄i0(

2∑
j=1

B(2j−1)α
2(j−1)). (3.17)

By (3.17), it follows that B0H
i
00 = β7Hi

00 has the factor α2. Thus Hi
00 has the

factor α2, and we can conclude that for each i there exists a scalar function

σi(x) on M such that

Hi
00 = σi(x)α2.

Thus (3.16) and (3.17) reduce to following

4∑
k=1

Ai
(2k−1)α

2k = σi(x)α2(

2∑
j=1

B(2j−1)α
2j) + µα2s̄i0(

3∑
j=0

B(2j)α
2j) (3.18)

and

4∑
k=1

yiA
i
(2k)α

2k = yiσ
i(x)α2(

3∑
j=0

B(2j)α
2j) + µα2s̄i0(

2∑
j=1

B(2j−1)α
2(j−1)). (3.19)

By multiplying (3.18) and (3.19) with yi, we have

4∑
k=1

yiA
i
(2k−1)α

2k = yiσ
i(x)α2(

2∑
j=1

B(2j−1)α
2j) (3.20)

and

4∑
k=1

yiA
i
(2k)α

2k = yiσ
i(x)α2(

3∑
j=0

B(2j)α
2j). (3.21)

By (3.21), it follows that−yiA
i
2+(yiσ

i(x))B0 = −6λβ4α2(βs0+r00)+β7(yiσ
i(x))

has the factor α. Thus we get

yiσ
i(x) = 0.

Then by (3.20) and (3.21), we have

4∑
k=1

yiA
i
(2k−1)α

2k = 0 (3.22)

and

4∑
k=1

yiA
i
(2k)α

2k = 0. (3.23)
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By (3.22), we can see yiA
i
1 + yiA

i
3α

2 has the factor α4. Thus (−3λ + 1)β5r00
has the factor α2. Since n ≥ 3, then −3λ+ 1 ̸= 0 and r00 must has the factor

α2. Then we have

r00 = η(x)α2.

From (3.23), we deduce that yiA
i
2+yiA

i
4α

2 has the factor α4. Thus (3λ−1)β5s0
has the factor α2. Since n ≥ 3 so 3λ− 1 ̸= 0 and

s0 = 0.

By (3.19), it follows that Ai
8α

8 = −8b4si0 has the factor β, i.e., for each i there

exists a scalar function ξi(x) such that

−8b4si0 = ξi(x)β. (3.24)

Multiplying (3.24) with aik and differentiating with respect to yj implies that

−8b4skj = ξk(x)bj , (3.25)

where ξk := ξiaik. Contracting (3.25) with ykyj yields

(ξk(x)y
k)β = 0. (3.26)

Thus ξk(x)y
k = 0, and so

ξj = 0.

This implies that

skj = 0.

Since Ai
1 = −3λβ5ηα2yi, then (3.18) reduces to following

[
− 3λβ5ηyi +

4∑
k=2

Ai
(2k−1)α

2(k−2) − σi(x)(

2∑
j=1

B(2j−1)α
2(j−1))

− µs̄i0(
3∑

j=1

B(2j)α
2(j−1))

]
α2 = µs̄i0β

7.(3.27)

By (3.27), it follows that

s̄i0 = 0.

Thus in any case, β̄ is closed. It is well known that the Randers metric F̄ = ᾱ+β̄

is a Douglas metric if and only if β̄ is closed. Since both F and F̄ are Douglas

metric, then we get the proof. □



On Projectively Related (α, β)-Metrics 73

4. Proof of Theorem 1.2

In this section, we are going to prove the Theorem 1.2. Then, we prove the

Corollaries 1.3, 1.4 and 1.5.

Proof of Theorem 1.2: First we prove the necessity. Since Douglas tensor

is an invariant under projective change between two Finsler metrics. If F is

projectively related to F̄ , then they have the same Douglas tensor. By Theorem

1.1, we obtain that both F and F̄ are Douglas metrics. It is well known that

infinite series metric F = β2

β−α with b2 ̸= 10 is a Douglas metric if and only if

β is parallel with respect to α. Then

bi|j = 0. (4.1)

Plugging (4.1) into (2.2) and considering (3.1) implies that

Gi = Gi
α. (4.2)

On the other hand, it is proved that the Randers metric F̄ = ᾱ+ β̄ is a Douglas

metric if and only if

s̄ij = 0. (4.3)

By putting (4.3) in (2.2) with (3.2), we get

Ḡi = Gi
ᾱ +

r̄00
2(ᾱ+ β̄)

yi. (4.4)

Since F is projectively related to F̄ , then

Gi = Ḡi + Pyi, (4.5)

where Gi and Ḡi are the geodesic spray coefficients of F and F̄ , respectively

and P = P (x, y) is positively homogeneous scalar function on TM0 of degree

one with respect to y. By (4.2), (4.4) and (4.5), it follows that

Gi
α −Gi

ᾱ =
[ r̄00
2(ᾱ+ β̄)

+ P
]
yi. (4.6)

The left-hand side of the above equation is a quadratic form, then there exists

a one form θ = θi(x)y
i on M such that,

r̄00
2(ᾱ+ β̄)

+ P = θ. (4.7)

Then by (4.6) and (4.7), we have

Gi
α = Gi

ᾱ + θyi. (4.8)

This means that α is projectively related to ᾱ. Thus by (4.1), (4.3) and (4.8),

we get the proof of necessity. Now, we prove the sufficiency. Since β̄ is closed,

then it suffice to prove that F is projectively related to ᾱ. Plugging (4.1) into

(2.2) with (3.1) yields (4.2). Plugging (4.3) into (2.2) with (3.2) yields (4.4).

From (4.3), (4.4) and (4.8) we have Gi = Gi
ᾱ + θyi. Then F is projectively

related to F̄ . □
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Proof of Corollary 1.3: By Theorem 1.2, the necessity is obvious. For the

sufficiency, from Theorem 1.2, we know that β is a closed 1-form, i.e., sij = 0.

In [11], Lee-Lee proved that the infinite series metric F = β2

β−α is a weakly

Berwald metric if and only if rij = sj = 0. Thus bi|j = 0, i.e., β is parallel with

respect to α. □

Remark 4.1. Let F = F (x, y) be a Finsler metric on an n-dimensional man-

ifold M . The distortion τ = τ(x, y) on TM associated with the Busemann-

Hausdorff volume form dVBH = σ(x)dx is defined by

τ(x, y) = ln

√
det(gij(x, y))

σ(x)
.

Then the S-curvature is defined by

S(x, y) =
d

dt

[
τ
(
c(t), ċ(t)

)]
|t=0,

where c(t) is the geodesic with c(0) = x and ċ(0) = y. The S-curvature is a

scalar function on TM , which was introduced by Shen to study volume compar-

ison in Riemann-Finsler geometry [22]. Thus, it follows that the S-curvature

S(y) measures the rate of change of the distortion on (TxM,Fx) in the direction

y ∈ TxM .

In [6], Cheng-Shen a non-Riemannian (α, β)-metric F of non-Randers type

ϕ ̸= k1
√
1 + k2s2 + k3s is of isotropic S-curvature, S = (n + 1)cF , where

c = c(x) is a scalar function on M , if and only if one of the following holds

(a) β satisfies

rij = ε{b2aij − bibj}, sj = 0, (4.9)

where ε = ε(x) is a scalar function, and ϕ = ϕ(s) satisfies

Φ = −2(n+ 1)k
ϕ∆2

b2 − s2
(4.10)

where k is a constant. In this case, S = (n+ 1)cF with c = kε.

(b) β satisfies

rij = 0, sj = 0. (4.11)

In this case, S = 0, regardless of choices of a particular ϕ (see Theorem 1.2).

By a direct computation, we can obtain a formula for mean Cartan torsion

of an (α, β)-metric as follows

Ii = − Φ

2∆ϕα2
(ϕ− sϕ′)(αbi − syi).

Then the condition Φ = 0 characterizes the Riemannian metrics among (α, β)-

metrics. Hence, we suppose that Φ ̸= 0.

In the proof of Corollary 1.3, we remark that an infinite series metric F =
β2

β−α is weakly Berwaldian if and only if rij = sj = 0 [11]. Then, we conclude

the following.
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Corollary 4.2. For an infinite series metric, S = 0 if and only if E = 0.

The authors guess that if they replace the condition E = 0 with the condition

of isotropic E-curvature E = n+1
2 cF−1h, where c = c(x) is a scalar function

on M and h is the angular metric, then the Corollary 1.3 is hold.

Proof of Corollary 1.4: In [7], Cheng-Shen proved that a Randers metric

F = ᾱ+ β̄ has isotropic S-curvature, S̄ = (n+ 1)cF̄ , if and only if

ē00 = 2c(ᾱ2 − β̄2),

where ēij := r̄ij + b̄is̄j + b̄j s̄i, ē00 = ēijy
iyj and c = c(x) is a scalar function on

M . In [26], Tang proved that for a Randers metric, H̄ = 0 if and only if S̄ = 0.

Thus H̄ = 0 implies that

ēij = 0.

By assumption, β̄ is closed and then

s̄ij = 0.

This implies that

r̄ij = 0

and then β̄ is parallel. In [10], Hashiguchi-Ichijyō showed that for a Randers

metric F̄ = ᾱ+ β̄, if β̄ is parallel then F is Berwaldian. On the other hand, by

assumption we have Gi = Ḡi + Pyi, where Gi and Ḡi are the geodesic spray

coefficients of F and F̄ , respectively. Then

Gi
jkl = Pjkly

i + Pjkδ
i
l + Pjlδ

i
k + Pklδ

i
j . (4.12)

Taking a trace of (4.12) implies that

Pjk =
2

n+ 1
Ejk. (4.13)

Plugging (4.13) in (4.12) yields

Bi
jkl =

2

n+ 1
{Ejkδ

i
l + Ejlδ

i
k + Eklδ

i
j + Ejk,ly

i}.

This means that F is a Douglas metric. On the other hand, Lee-Park proved

that every Douglas infinite series metric F = β2

β−α with b2 ̸= 10 on a manifold

M of dimension n > 2 is Berwaldian [12]. Then by assumptions, we can

conclude that the infinite series metric is a Berwald metric. This completes the

proof. □

Proof of Corollary 1.5: As we explain in the Corollary 1.4, it is proved

that the infinite series metric F = β2

β−α is a Douglas metric if and only if β is

parallel with respect to α, i.e., bi|j = 0. In [9], Hashiguchi-Ichijyō showed that

a Randers metric F̄ = ᾱ+ β̄ is a Douglas metric if and only if β̄ is closed. Then

by Theorem 1.2, we get the proof. □
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By Theorem 1.2, we can conclude the following.

Corollary 4.3. Let F = β2

β−α and F̄ = ᾱ + β̄ be two (α, β)-metrics on a

manifold M of dimension n ≥ 3, where α and ᾱ are two Riemannian metrics,

β and β̄ are two nonzero one forms with b2 ̸= 10. Then F is projectively

related to F̄ if and only if F is Berwald metric and F̄ is Douglas metric and

the corresponding Riemannian metrics α and ᾱ are projectively related.
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