On the flag curvature of invariant square metrics

Document Type : Original Article

Author

‎Department of Mathematics, Islamic Azad University‎, ‎Astara branch‎, ‎Astara‎, ‎Iran

Abstract

In this paper, we give an explicit formula for the flag curvature of invariant square metric and Randers change of square metric.

Keywords


  • 1. H. An and S. Deng, Invariant (α, β)− metrics on homogeneous manifolds, monatsh.
    Math., 154 (2008), 89-102.
  • 2. P. Bahmandoust and D. Latifi, Naturally reductive homogeneous (α, β) spaces, Int. J.
    Geom. Methods Mod. Phys. 17(8) (2020), 2050117.
  • 3. D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry,
    Springer-Verlag, New-York, 2000.
  • 4. L. Berwald, Uber die ¨ n-dimensionalen Geometrien konstanter Kr¨ummung, in denen die
    Geraden die k¨urzesten sind. Math. Z. 30(1929), 449-469.
  • 5. S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts in
    Mathematics, Vol. 6 (2005).
  • 6. S. Deng and Z. Hou, Invariant Randers metrics on homogeneous Riemannian manifolds,
    J. Phys. A: Math. Gen. 37 (2004), 4353-4360.
  • 7. Hashiguchi, H. and Ichijyo, Y., Randers spaces with rectilinear geodetics, Rep. Fac. Sci.e
    Kagoshima Univ. (Math. Phys. Chem.)., 13 (1980), 33-40.
  • 8. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57
    (2007) 1421-1433.
  • 9. D. Latifi and A. Razavi, Bi-invariant Finsler metrics on Lie groups, Austral. J. Basic
    Appl. Sci., 5(12) (2011), 507-511.
  • 10. D. Latifi, Bi-invariant (α, β)− metrics on Lie groups, Acta. Uni. Apulensis, 65 (2021),
    121-131.
  • 11. Matsumoto, M., On Finsler spaces with Randers metric and special forms of important
    tensors, J. Math Kyoto Univ., 14 (1975), 477-498.
  • 12. M. Parhizkar and D. Latifi, On the flag curvature of invariant (α, β)− metrics, Int. J.
    Geom. Methods Mod. Phys., 13 (2016), 1650039, 1-11.
  • 13. T. Puttmann, Optimal pinching constants of odd dimensional homogeneous spaces, Invent. Math., 138 (1999), 631-684.
  • 14. G. Shanker and K. Kaur, Naturally reductive homogeneous space with (α, β)− metric,
    Lobachevskii J. of Math., 40(2) (2019), 210-218.
  • 15. Shibata, C., On invariant tensors of β-changes of Finsler metrics, J. Math. Kyoto
    Univ., 24 (1984), 163-188.