On 3-dimensional Finsler manifolds

Document Type : Original Article

Author

Faculty of Science, Department of Mathematics University of Qom, Qom. Iran

Abstract

Every Landsberg metric and every Landsbeg metric is a weakly Landsberg metric, but the converse is not true generally. Let (M, F) be a 3-dimensional Finsler manifold. In this paper, we find a condition under which the notions of weakly Landsberg metric and Landsberg metric are equivalent.

Keywords


  • 1. M. Amini, On weakly Landsberg 3-dimensional Finsler Spaces, Journal of Finsler Geometry and its Applications, 1(2) (2020), 63-72.
  • 2. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,
    Springer-Verlage, 2000.
  • 3. D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geometry, 66(2004), 377-435.
  • 4. M. A. Javaloyes and H. Vit´orio, Zermelo navigation in pseudo-Finsler metrics,
    arXiv:1412.0465, 2014.
  • 5. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important
    tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
  • 6. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars,
    Demonst. Math, 6(1973), 223-251.
  • 7. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars and its
    applications, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 45(1) (1999), 115-140.
  • 8. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces, Tensor.
    N. S. 32(1978), 225-230.
  • 9. X. Mo and L. Huang, On characterizations of Randers norms in a Minkowski space,
    Internat. J. Math., 21(2010), 523-535.
  • 10. X. Mo and Z. Shen, On negatively curved Finsler manifolds of scalar curvature, Canad.
    Math. Bull., 48(1) (2005), 112-120.
  • 11. A. Mo´or, Uber die Torsion-Und Krummungs invarianten der drei reidimensionalen ¨
    Finslerchen R¨aume, Math. Nach, 16(1957), 85-99.
  • 12. K. Nomizu and T. Sasaki, Affine differential geometry. Geometry of affine immersions,
    Cambridge Tracts in Mathematics, Vol. 111. Cambridge University Press, Cambridge
    (1994).
  • 13. L. Yan, On characterizations of some general (α, β)-norms in a Minkowski space,
    arXiv:1505.00554v1, 2015.