Every Landsberg metric and every Landsbeg metric is a weakly Landsberg metric, but the converse is not true generally. Let (M, F) be a 3-dimensional Finsler manifold. In this paper, we find a condition under which the notions of weakly Landsberg metric and Landsberg metric are equivalent.
1. M. Amini, On weakly Landsberg 3-dimensional Finsler Spaces, Journal of Finsler Geometry and its Applications, 1(2) (2020), 63-72.
2. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer-Verlage, 2000.
3. D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Differential Geometry, 66(2004), 377-435.
4. M. A. Javaloyes and H. Vit´orio, Zermelo navigation in pseudo-Finsler metrics, arXiv:1412.0465, 2014.
5. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
6. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars, Demonst. Math, 6(1973), 223-251.
7. M. Matsumoto, A theory of three-dimensional Finsler spaces in terms of scalars and its applications, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 45(1) (1999), 115-140.
8. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces, Tensor. N. S. 32(1978), 225-230.
9. X. Mo and L. Huang, On characterizations of Randers norms in a Minkowski space, Internat. J. Math., 21(2010), 523-535.
10. X. Mo and Z. Shen, On negatively curved Finsler manifolds of scalar curvature, Canad. Math. Bull., 48(1) (2005), 112-120.
11. A. Mo´or, Uber die Torsion-Und Krummungs invarianten der drei reidimensionalen ¨ Finslerchen R¨aume, Math. Nach, 16(1957), 85-99.
12. K. Nomizu and T. Sasaki, Affine differential geometry. Geometry of affine immersions, Cambridge Tracts in Mathematics, Vol. 111. Cambridge University Press, Cambridge (1994).
13. L. Yan, On characterizations of some general (α, β)-norms in a Minkowski space, arXiv:1505.00554v1, 2015.
ShahbaziNia, M. (2022). On 3-dimensional Finsler manifolds. Journal of Finsler Geometry and its Applications, 3(2), 20-28. doi: 10.22098/jfga.2022.11803.1073
MLA
Mohammad ShahbaziNia. "On 3-dimensional Finsler manifolds", Journal of Finsler Geometry and its Applications, 3, 2, 2022, 20-28. doi: 10.22098/jfga.2022.11803.1073
HARVARD
ShahbaziNia, M. (2022). 'On 3-dimensional Finsler manifolds', Journal of Finsler Geometry and its Applications, 3(2), pp. 20-28. doi: 10.22098/jfga.2022.11803.1073
VANCOUVER
ShahbaziNia, M. On 3-dimensional Finsler manifolds. Journal of Finsler Geometry and its Applications, 2022; 3(2): 20-28. doi: 10.22098/jfga.2022.11803.1073