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Abstract. Every Landsberg metric and every Landsbeg metric is a weakly

Landsberg metric, but the converse is not true generally. Let (M,F ) be a 3-

dimensional Finsler manifold. In this paper, we find a condition under which

the notions of weakly Landsberg metric and Landsberg metric are equivalent.
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1. Introduction

The class of Randers metrics are natural Finsler metrics which were intro-

duced by G. Randers and derived from the research on the four-space of general

relativity. His metric is in the form F = α+β, where α =
√
aij(x)yiyj is grav-

itation field and β = bi(x)y
i is the electromagnetic field. Randers regarded

these metrics not as Finsler metrics but as “affinely connected Riemannian

metrics”, which is a rather confusing notion. This metric was first recognized

as a kind of Finsler metric in 1957 by R. S. Ingarden, who first named them

Randers metrics. Randers metrics have been widely applied in many areas of

natural science, including seismic ray theory, biology and physics, etc.

In [5], Matsumoto introduced the notion of Matsumoto torsion and proved

that any Randers metric has vanishing Matsumoto torsion. Every Finsler met-

ric with vanishing Matsumoto torsion is called C-reducible. Thus by Mat-

sumoto’s result, Randers metrics are C-reducible. Later on, Matsumoto-Hōjō

proved that the converse is true too [8]. In [10], Mo-Shen proved that every
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Finsler metric of negative scalar flag curvature on a compact manifold of di-

mension n ≥ 3 is a Randers metric. By using the main scalar and its derivation

in Finsler plans, Mo-Huang found a quantity that characterized Randers plans

among the Minkowski plans [9]. They pointed out that the Matsumoto torsion

is just the cubic form of the indicatrix with its Blaschke structure. Hence the

Matsumoto-Hōjō’s Theorem is a corollary of the Maschke-Pick-Berwald Theo-

rem (see page 53 in [12]). In [3], Bao-Robles-Shen showed that a Finsler metric

is of Randers type if and only if it is a solution of the navigation problem on a

Riemannian manifold. Then Javaloyes-Vitório define the Matsumoto torsion of

a conic pseudo-Finsler metric and proved that a conic pseudo-Finsler manifold

of dimension at least 3 is of pseudo-Randers-Kropina type if and only if its

Matsumoto tensor vanishes identically [4]. Recently, Yan give a new character-

izations of Randers norms by proving a maximum property of Randers norms

and some integral inequalities on the indicatrix [13].

In [11], Moór constructed an intrinsic orthonormal frame field for the class

of 3-dimensional Finsler manifolds which was a generalization of the Berwald

frame of two-dimensional Finsler manifolds. Then, Matsumoto gave a system-

atic description of a general theory of 3-dimensional Finsler spaces based on

Moór’s frame, that is, on a frame whose first vector is the normalized sup-

porting element and the second one is taken as the normalized torsion vector

[7]. In addition to three main scalars and nine scalars representing the cur-

vature tensor, he introduces two important vector fields, called h-connection

and v-connection vectors. He proved that a non-Riemannian Berwald 3-space

is characterized by the fact that the h-connection vector hi vanishes and the

main scalars H, I, J are h-covariant constant.

In dimension two, any weakly Landsberg metric must be a Landsberg metric.

It has been shown that on a weakly Landsberg manifold, the volume function

V ol(x) is a constant. Some rigidity problems also lead to weakly Landsberg

manifolds. For example, for a closed Finsler manifold of nonpositive flag cur-

vature, if the S-curvature is a constant, then it is weakly Landsbergian. In this

paper, we find a condition under which the notions of weakly Landsberg metric

and Landsberg metric are equivalent.

Theorem 1.1. Let (M,F ) be a 3-dimensional Finsler manifold. Suppose that

the main scalars of F satisfy following[
(H′ − 3I ′) + 4J h0

]
C2 = 2ImJm

[
H− 3I

]
, (1.1)[

(H− 3I)h0 − 4J ′
]
C2 = −8ImJmJ , (1.2)

where H′ := H|iy
i, I ′ := I|iyi, J ′ := J|iy

i, C2 := IiIi, hi are called the h-

connection vectors and h0 := hiy
i. Then F is a Landsberg metric if and only

if it is a weakly Landsberg metric.
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2. Preliminaries

A Finsler metric on M is a function F : TM → [0,∞) which has the

following properties: (i) F is C∞ on TM0 := TM \ {0}; (ii) F is positively

1-homogeneous on the fibers of tangent bundle TM ; (iii) for each y ∈ TxM ,

the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1

2

[
F 2(y + su+ tv)

]
|s,t=0, u, v ∈ TxM.

Let x ∈ M and Fx := F |TxM . To measure the non-Euclidean feature of Fx,

define Cy : TxM × TxM × TxM → R by

Cy(u, v, w) :=
1

2

d

dt

[
gy+tw(u, v)

]
|t=0, u, v, w ∈ TxM.

The family C := {Cy}y∈TM0 is called the Cartan torsion [2]. It is well known

that C=0 if and only if F is Riemannian.

For y ∈ TxM0, define mean Cartan torsion Iy by Iy(u) := Ii(y)u
i, where

Ii := gjkCijk and u = ui ∂
∂xi |x. By Diecke Theorem, F is Riemannian if and

only if Iy = 0.

Define the Matsumoto torsionMy : TxM×TxM×TxM → R byMy(u, v, w) :=

Mijk(y)u
ivjwk where

Mijk := Cijk − 1

n+ 1
{Iihjk + Ijhik + Ikhij},

and

hij := FFyiyj = gij −
1

F 2
gipy

pgjqy
q

is the angular metric. A Finsler metric F is said to be C-reducible if My = 0.

This quantity is introduced by Matsumoto [5]. Matsumoto proves that every

Randers metric satisfies that My = 0. A Randers metric F = α + β on a

manifold M is just a Riemannian metric α =
√
aijyiyj perturbated by a one

form β = bi(x)y
i on M such that ∥β∥α < 1. Later on, Matsumoto-Hōjō proves

that the converse is true too.

Lemma 2.1. ([8]) A Finsler metric F on a manifold of dimension n ≥ 3 is a

Randers metric if and only if My = 0, ∀y ∈ TM0.

The horizontal covariant derivatives of C along geodesics give rise to the

Landsberg curvature Ly : TxM × TxM × TxM → R defined by Ly(u, v, w) :=

Lijk(y)u
ivjwk, where

Lijk := Cijk|sy
s,

u = ui ∂
∂xi |x, v = vi ∂

∂xi |x and w = wi ∂
∂xi |x. The family L := {Ly}y∈TM0 is

called the Landsberg curvature. A Finsler metric is called a Landsberg metric

if L = 0.
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The quantity L/C is regarded as the relative rate of change of C along

geodesics. Then F is said to be relatively isotropic Landsberg metric if

L = cFC,

for some scalar function c = c(x) on M .

The horizontal covariant derivatives of I along geodesics give rise to the

mean Landsberg curvature Jy(u) := Ji(y)u
i, where

Ji := gjkLijk.

A Finsler metric is called a weakly Landsberg metric if J = 0.

The quantity J/I is regarded as the relative rate of change of I along

geodesics. Then F is said to be relatively isotropic mean Landsberg metric

if

J = cF I,

for some scalar function c = c(x) on M .

3. 3-Dimensional Metrics

In [11], Moór introduced a special orthonormal frame field (ℓi,mi, ni) in the

three dimensional Finsler space. The first vector of the frame is the normalized

supporting element, the second is the normalized mean Cartan torsion vector,

and third is the unit vector orthogonal to them. Let (M,F ) be a 3-dimensional

Finsler manifold [1]. Suppose that ℓi := Fyi is the unit vector along the element

of support, mi is the unit vector along mean Cartan torsion Ii, i.e., mi := Ii/C,

where C :=
√
IiIi and ni is a unit vector orthogonal to the vectors ℓi and mi.

Then the triple (ℓi,mi, ni) is called the Moór frame.

In 3-dimensional Finsler manifolds, we have

gij = ℓiℓj +mimj + ninj .

Then the Cartan torsion of F is written as follows

FCijk = Hmimjmk − J
{
mimjnk +mjmkni +mkminj + ninjnk

}
+I

{
minjnk +mjnink +mkninj

}
, (3.1)

where H, I and J are called the main scalars such that H + I = FC. Since

the angular metric is given by

hij = mimj + ninj

then (3.1) can be written as

Cijk =
{
aihjk + ajhki + akhij

}
+
{
biIjIk + IibjIk + IiIjbk

}
, (3.2)

where

ai :=
1

3F

[
3Imi + J ni

]
, bi :=

1

3FC2

[
(H− 3I)mi − 4J ni

]
. (3.3)
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It is easy to see that aiy
i = 0 and biy

i = 0.

Lemma 3.1. Let (M,F ) be a 3-dimensional Finsler manifold. Then bi = 0 if

and only if the following hold

H = 3I, J = 0. (3.4)

In this case, ai := 1/FImi.

Proof. By definition, bi = 0 if and only if the following hold

(H− 3I)mi − 4J ni = 0. (3.5)

Contracting (3.5) with mi and ni yield (3.4). □

Lemma 3.2. Let (M,F ) be a 3-dimensional Finsler manifold. Then F is a

Randers metric if and only if the main scalars of F satisfy the following

I =
1

4
FC, J = 0. (3.6)

Now, let us put

b′i := bi|jy
i.

Then, we get the following.

Lemma 3.3. b′i = 0 if and only if[
(H′ − 3I ′) + 4J h0

]
C2 = 2ImJm

[
H− 3I

]
, (3.7)[

(H− 3I)h0 − 4J ′
]
C2 = −8ImJmJ , (3.8)

where H′ := H|iy
i, I ′ := I|iyi and J ′ := J|iy

i.

Proof. The horizontal derivation of Moór frame are giving by following

ℓi|j = 0, mi|j = hjni, ni|j = −hjmi,

where hi are called the h-connection vectors. Thus

m′
i := mi|jy

j = h0ni, n′
i := ni|jy

j = −h0mi,

where h0 := hiy
i. Then

b′i =
1

3FC4

{[
(H′ − 3I ′)mi + (H− 3I)h0ni − 4(J ′ni − J h0mi)

]
C2

−2ImJm
[
(H− 3I)mi − 4J ni

]}
. (3.9)
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Then b′i = 0 if and only if the following holds[
(H′ − 3I ′)mi + (H− 3I)h0ni − 4(J ′ni − J h0mi)

]
C2

= 2ImJm
[
(H− 3I)mi − 4J ni

]
. (3.10)

Multiplying (3.10) with mi and ni yields (3.7) and (3.8), respectively. □

Corollary 3.4. Let F be a 3-dimensional Landsberg manifold with constant

main scalars. Then gy(b
i, b′i) = 0.

Proof. By assumptions, (3.9) reduces to following

b′i =
1

3FC2

[
(H− 3I)ni + 4Jmi

]
h0.

Since

bi :=
1

3FC2

[
(H− 3I)mi − 4J ni

]
(3.11)

then

b′ib
i :=

1

9F 2C4

[
(H− 3I)mi − 4J ni

][
(H− 3I)ni + 4Jmi

]
h0 = 0 (3.12)

This means that the vector bi is orthonormal to b′i with respect to the funda-

mental form gy. □

Lemma 3.5. Let (M,F ) be a 3-dimensional Finsler manifold. Then the Lands-

berg curvature of F is given by following

Lijk = −1

2

(
Jmbm + b′mIm

){
Iihjk + Ijhki + Ikhij

}
−1

4

(
ImJm + JmIm

){
bihjk + bjhki + bkhij

}
+
{
b′iIjIk + b′jIiIk + b′kIiIj

}
−bmIm

2

{
Jihjk + Jjhki + Jkhij

}
− C2

4

{
b′ihjk + b′jhki + b′khij

}
+
{
bi(JjIk + IjJk) + bj(JiIk + IiJk) + bk(JiIj + IiJj)

}
1

4

{
Jihjk + Jjhki + Jkhij

}
, (3.13)

where b′i = bi|sy
s.

Proof. Multiplying (3.2) with gij implies that

ai =
1

4

[
(1− 2Imbm)Ii −C2bi

]
. (3.14)
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By plugging (3.14) in (3.2), we get

Cijk =
1

4

{
Iihjk + Ijhki + Ikhij

}
− bmIm

2

{
Iihjk + Ijhki + Ikhij

}
−C2

4

{
bihjk + bjhki + bkhij

}
+
{
biIjIk + IibjIk + IiIjbk

}
.(3.15)

The relation (3.15) can be written as follows

Mijk = −bmIm

2

{
Iihjk + Ijhki + Ikhij

}
− C2

4

{
bihjk + bjhki + bkhij

}
+

{
biIjIk + IibjIk + IiIjbk

}
.(3.16)

By taking a horizontal derivation of (3.16), we get

M ′
ijk = −1

2

(
bmJm + b′mIm

){
Iihjk + Ijhki + Ikhij

}
−bmIm

2

{
Jihjk + Jjhki + Jkhij

}
−C2

4

{
b′ihjk + b′jhki + b′khij

}
−1

4

(
ImJm + JmIm

){
bihjk + bjhki + bkhij

}
+
{
bi(JjIk + IjJk) + bj(JiIk + IiJk) + bk(JiIj + IiJj)

}
+
{
b′iIjIk + b′jIiIk + b′kIiIj

}
, (3.17)

where b′i = bi|sy
s and

M ′
ijk := Mijk|sy

s = Lijk − 1

4

{
Jihjk + Jjhki + Jkhij

}
.

Rewriting (3.17) implies (3.13). □

Proof of Theorem 1.1: By Lemma 3.3, the relations (3.24) and (1.2) holds

if and only if b′i = 0. In this case, (3.13) reduces to following

Lijk =
1

4

{
Jihjk + Jjhki + Jkhij

}
− 1

4

(
ImJm + JmIm

){
bihjk + bjhki + bkhij

}
−bmJm

2

{
Iihjk + Ijhki + Ikhij

}
− bmIm

2

{
Jihjk + Jjhki + Jkhij

}
+bi(JjIk + IjJk) + bj(JiIk + IiJk) + bk(JiIj + IiJj). (3.18)

By (3.18) it follows that L = 0 if and only if J = 0. □

By definition, if L = cFC holds for some scalar function c = c(x) on the

manifold, then we have J = cF I. It is interesting to find the condition under

which J = cF I implies L = cFC. Then we have the following.
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Lemma 3.6. Let (M,F ) be a 3-dimensional Finsler manifold. Then L = cFC

is equal to J = cF I if and only if the following holds

4cFMijk = 2b′mIm
{
Iihjk + Ijhki + Ikhij

}
+
{
Dijb

′
k +Djkb

′
i +Dkib

′
j

}
,(3.19)

where Dij := C2hij − 4IiIj.

Proof. Let J = cF I. Then (3.13) reduces to following

Lijk = cF (Cijk +Mijk)−
b′mIm

2

{
Iihjk + Ijhki + Ikhij

}
+
{
b′iIjIk + b′jIiIk + b′kIiIj

}
−C2

4

{
b′ihjk + b′jhki + b′khij

}
. (3.20)

By (3.20), it follows that L = cFC if and only if (3.19) holds □

Let b′i = 0. Then by (3.19), the above notions are equivalent if and only if

c = 0 or M = 0. Then we get the following.

Corollary 3.7. Let (M,F ) be a 3-dimensional Finsler manifold. Suppose that

b′i = 0. Then L = cFC is equal to J = cF I if and only if F is weakly Landsberg

metric or Randers metric.

Finally, we prove the following.

Theorem 3.8. Let (M,F ) be a 3-dimensional non-Riemannian Finsler man-

ifold such that the main scalars satisfy following[
(H′ − 3I ′) + 4J h0

]
C2 = 2ImJm

[
H− 3I

]
, (3.21)[

(H− 3I)h0 − 4J ′
]
C2 = −8ImJmJ . (3.22)

Suppose that F has relatively isotropic mean Landsberg curvature J = cF I,

where c = c(x) is a scalar function on M . Then H = 3I if and only if J = 0.

In this case, F is a Randers metric.

Proof. By putting J = cF I in (3.21) and (3.22), we get

(H− 3I)′ − 2cF (H− 3I) + 4J h0 = 0, (3.23)

4J ′ − 8cFJ − (H− 3I)h0 = 0. (3.24)

By (3.23) and (3.24) it follows that H = 3I if and only if J = 0 provided that

h0 ̸= 0. By Lemmas 3.1 and 3.2, F reduces to a Randers metric. □
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11. A. Moór, Über die Torsion-Und Krummungs invarianten der drei reidimensionalen
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