Geometric structures on Lorentzian para-Kenmotsu manifolds admitting a semi-symmetric metric connection

Document Type : Original Article

Authors

Department of Mathematics and Astronomy, University of Lucknow, 226007-Lucknow, Uttar Pradesh, India

Abstract

In this paper, we study Lorentzian para-Kenmotsu manifolds endowed with a semi-symmetric metric connection and establish necessary and sufficient conditions under which the Ricci tensor is ω-parallel with respect to this connection. These results extend classical notions of Ricci parallelism from Riemannian geometry to a broader non-Riemannian framework. In addition, we examine the behavior of concircular and projective curvature tensors on such manifolds and derive structural identities that highlight the influence of semi-symmetric torsion on fundamental geometric invariants. To support our theoretical developments, we construct an explicit 4-dimensional illustration. The findings deepen the understanding of non-Riemannian geometric structures and suggest potential applications in generalized theories of gravity.

Keywords


 1. T. Adati and K. Matsumoto, On conformally recurrent and conformally symmetric PSasakian manifolds, TRU Math., 13 (1997), 25{32, .
2. J. K. Beem, P. E. Ehrlich and K. L. Easley
Global Lorentzian Geometry, 2nd-ed., MarcelDekker, New York, 1996
3. A. Berman,
Concircular curvature tensor of a semi-symmetric metric connection in a  Kenmotsu manifold, Thai J. Math., 13(1)(2015), 245{257, .
4. D. E. Blair,
Contact manifolds in Riemannian Geometry, Lecture Notes in Math., 509,Springer-Verlag, Berlin, (1976).
5. E. Cartan, ´
Sur une classe remarquable d’espaces de riemannians, Bull. Soc. Math.France, 54(1926), 214{264.
6. E. Cartan, ´
Le¸cons sur la g´eom´etrie des espaces de Riemann, 2nd ed., Gauthier-Villars,Paris, (1946).
7. S. K. Chaubey and S. K. Yadav,
Study of Kenmotsu manifolds with semi-symmetric metric connection, Univ. J. Math. Appl., 1(2), (2018), 89{97.
8. A. De and S. Mallick,
On !-Einstein and weakly φ-symmetric Lorentzian para-Kenmotsu manifolds, Journal of Geometry, 112 (2021), Article 51. DOI: 10.1007/s00022-021-00599-4.
9. U. C. De,
On φ-symmetric Kenmotsu manifolds, Int. Electron. J. Geom., 1(1), (2008),33{38.
10. U. C. De, A. A. Shaikh and S. Biswas,
On φ-recurrent Sasakian manifolds, Novi Sad J.Math., 33 (2003), 43{48.
11. U. C. De and A. Sarkar,
On φ-Ricci Symmetric Sasakian manifolds, Proc. Jangjeon Math. Soc., 11(1) (2008), 47{52.
12. U. C. De and A. Sarkar,
On Lorentzian almost paracontact manifolds studying certain conditions, Southeast Asian Bulletin of Mathematics, 33 (2009), 297{307.
13. U. C. De and A. Saha,
On Lorentzian para-Kenmotsu manifolds, Mathematica Slovaca,64(6) (2014), 1439{1456. DOI: 10.2478/s12175-014-0272-0.
14. A. Friedmann and J. A. Schouten,
Uber die Geometrie der halbsymmetrischen ¨Ubertragung ¨ , Math. Z., 21(1924)., 211-223.
15. A. Haseeb and R. Prasad, Certain results on Lorentzian para-Kenmotsu manifolds, Bol.Soc. Paran. Mat. (3s.), 39(3) (2021), 201-220.
16. H. A. Hayden,
Subspaces of a space with torsion, Proc. London Math. Soc., 34 (1932),27-50.
17. T. Imai,
Notes on semi-symmetric metric connections, Tensor N. S., 24(1972), 293-296.
18. K. Kenmotsu,
A class of almost contact Riemannian manifolds, Tohoku Math. J.,24(1972), 93-103.
19. U. K. Kim,
Conformally flat generalized Sasakian-space forms and locally symmetric generalized Sasakian-space forms, Note Mat., 26(2006), 55{67.
20. S. Kishor, S. Mishra and A. K. Verma,
Study of W7-curvature tensor on (LPK)n manifolds, J. Finsler Geom. Appl. 7(1) (2026), 31-44.
21. M. Kon,
Invariant submanifolds in Sasakian manifolds, Math. Ann., 219(1976), 277-290.
22. K. Matsumoto,
On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Nat. Sci.,12(1989), 151-156.
23. I. Mihai, L. Nicolescu and R. Rosca,
On Exact 2-Para Sasakian Manifolds, Rend. Circ.Mat. Palermo (2), 68 (1999), 223-236.
24. J. V. Narlikar,
General Relativity and Gravitation, Macmillan Co. of India, (1978).
25. R. Osserman,
Curvature in the Eighties, Amer. Math. Monthly, 97(8)(1990), 731{756.
26. R. Prasad, A. Verma and V. S. Yadav,
Characterizations of the perfect fluid Lorentzianpara Kenmotsu spacetimes, GANITA, 73(2) (2023), 89-104.
27. R. Prasad, A. Verma and V. S. Yadav,
Characterization of φ-symmetric Lorentzian para-Kenmotsu manifolds, Facta Univ. Ser. Math. Inform., 38(3) (2023), 635{647.
28. R. Prasad, A. Haseeb, A. Verma and V. S. Yadav,
A study of φ-Ricci symmetric LPKenmotsu manifolds, Int. J. Maps Math., 7(1) (2024), 33{44.
29. I. Sato,
On a structure similar to almost contact structure, Tensor N. S., 30, (1976).
30. B. B. Sinha and K. L. Sai Prasad,
A class of almost para contact metric manifold, Bull.Calcutta Math. Soc., 87 (1995), 307-312.
31. H. Stephani,
General Relativity: An Introduction to the Theory of the Gravitational Field, Cambridge Univ. Press, Cambridge, (1982).
32. T. Takahashi,
Sasakian φ-symmetric spaces, Tohoku Math. J., 29 (1977), 91{113.
33. K. Yano,
Concircular geometry I: Concircular transformation, Proc. Imp. Acad. Japan,16 (1940), 195{200.
34. K. Yano,
On semi-symmetric metric connection, Rev. Roumaine Math. Pures Appl., 15(1970), 1579{1586.