1. S. Azami, Complete shrinking general Ricci Flow soliton systems. Math. Notes. 114(5)(2023), 675-678.
2. B. Bidabad and M. Yar Ahmadi, Complete Ricci solitons on Finsler manifolds, Sci.China. Math. 61 (2018), 1825-1832. https://doi.org/10.1007/s11425-017-9349-8
3. B. Bidabad and M. Yar Ahmadi, On complete Yamabe solitons, Adv. Geom. 18(1)(2018), 101-104.
4. B. Bidabad and M. Yar Ahmadi, On complete Finslerian yamabe solitons, Diff. Geom.Appl. 66 (2019), 52-60.
5. F.Q. Fang, J.W. Man and Z.L. Zhang, Complete gradient shrinking Ricci solitons have finite topological type, Comptes. Rendus. Math, 346(2008), 653-656.
6. M. Garcia-Fernandez and J. Streets, Generalized Ricci Flow, volume 76 of University Lecture Series. American Mathematical Society, Providence, 2021.
7. M. Ishida, On the Shrinking Entropy Functional for Generalized Ricci Flow, J. Geom.Anal. 35(5) (2025), p. 148.
8. KH. Lee, The Stability of Generalized Ricci Solitons, J. Geom. Anal. 33(9) (2023), 273.
9. B. List, Evolution of an extended Ricci flow system, Comm. Analysis. Geom. 2 (1968),1-7.
10. J. Y. Wu, A general Ricci flow system. J. Korean Math. Soc. 55(2) (2018), 253-292.
11. W. Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proceedings of the AMS. 136(5) (2008), 1803-1806.
12. M. Yar Ahmadi and B. Bidabad, On compact Ricci solitons in Finsler geometry, C.R.Acad. Sci. Paris, Ser. I. 353 (2015), 1023-1027.
13. M. Yar Ahmadi, On the gradient Finsler Yamabe solitons, AUT J. Math. Comput.2(2020), 229-233.
14. M. Yar Ahmadi and S. Hedayatian, Finite topological type of complete Finsler gradient
shrinking Ricci solitons, Turk. J. Math. 45(2021), 2419-2426.