On generalized silver Finsler metrics

Document Type : Original Article

Authors

1 Department of Mathematics, College of Science, Jouf University, Skaka, KSA

2 Department of Mathematics, Faculty of Science, Islamic University of Madinah, Madinah, KSA

Abstract

In this paper, we present a coordinate-free investigation of the generalized silver Finsler metric. Specifically, for a Finsler manifold (M, L)$and a 1-form B, we study various geometric structures associated with the Finsler metric L= L ∅(s), where ∅(s):= s2 - 2s - 1.The function ∅(s) has roots s1 = 1 - √2 and s2 = 1 +√2, where the positive root represents the so-called the silver ratio. Assuming that L is a Finsler metric, we refer to L as the generalized silver Finsler metric. We derive the associated metric and Cartan tensors, along with other fundamental geometric objects. The non-degeneracy condition of the metric tensor of L is characterized. We compute the geodesic spray, Barthel connection, and Berwald connection of L, when the 1-form B arises from a concurrent π-vector field. Furthermore, we determine the curvature of the Barthel connection associated with L. An illustrative example is also provided.

Keywords


 1. S. G. Elgendi and A. Soleiman, An intrinsic proof of Numata’s theorem on Landsberg spaces, J. Korean Math. Soc., 61, 1 (2024), 149{160. arXiv: 2304.07925 [math. DG].
2. A. Fr¨olicher and A. Nijenhuis,
Theory of vector-valued differential forms, I, Ann. Proc.Kon. Ned. Akad., A, 59 (1956), 338{359.
3. J. Grifone,
Structure pr´esque-tangente et connexions, I, Ann. Inst. Fourier, Grenoble,22, 1 (1972), 287-334.
4. J. Grifone,
Structure presque-tangente et connexions, II, Ann. Inst. Fourier, Grenoble,22, 3 (1972), 291-338.
5. C.E. Hretcanu,
Submanifolds in Riemannian manifold with Golden structure, Workshop on Finsler geometry and its applications, Hungary, 2007.
6. J. Klein and A. Voutier,
Formes ext´erieures g´en´eratrices de sprays, Ann. Inst. Fourier,Grenoble, 18, 1 (1968), 241-260.
7. R. Miron and M. Anastasiei,
The geometry of Lagrange spaces: Theory and applications,Kluwer Acad. Publ., 59, 1994.
8. M. Ozkan and B. Peltek,
A new structure on manifolds: Silver structure, Int. Electron.J. Geom., 9(2)(2016), 59{69.
9. L. Rezso,
A note on Finsler-Minkowski norms, Houston J. Math., 33 3 (2007), 701{707.
10. A. Soleiman,
Recurrent Finsler manifolds under projective change, Int. J. Geom. Meth.Mod. Phys., 13 (2016).
11. A. Soleiman and S. G. Elgendi,
Intrinsic study of generalized horizontal recurrent Finsler connection, Publ. Math. Debrecen, 105/3-4 (2024), 321-339.
12. J. Szilasi, R.L. Lovas and D.Cs. Kert´esz, Connections, Sprays and Finsler Structures,World Scientific, 2014.
13. Nabil L. Youssef, S. H. Abed and A. Soleiman,
Cartan and Berwald connections in the pullback formalism, Algebras, Groups and Geometries, 25 (2008), 363-384. arXiv:0707.1320 [math. DG].
14. Nabil L. Youssef, S. H. Abed and A. Soleiman,
Concurrent π-vector fields and energy β-change, Int. J. Geom. Meth. Mod. Phys., 60 (2011), 1003{1031.
15. Nabil L. Youssef, S. H. Abed and A. Soleiman,
A global approach to the theory of connections in Finsler geometry, Tensor, N. S., 71 (2009), 187-208. arXiv: 0801.3220[math.DG].
16. Nabil L. Youssef, S. H. Abed and A. Soleiman,
Geometric objects associated with the fundumental connections in Finsler geometry, J. Egypt. Math. Soc., 18 (2010), 67-90.arXiv: 0805.2489 [math.DG].
17. Nabil L. Youssef and S. G. Elgendi,
New Finsler package, Comput. Phys. Commun.,185, 3 (2014), 986{997.