1. P. L. Antonelli, R. S. Ingarden and M. Matsumoto, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, Dordrecht, 1993.
2. D. Bao, S.-S. Chern, and Z. Shen, An introduction to Riemann-Finsler Geometry, Springer-Verlang New York, (2000), 1-192.
3. D. Bao and C. Robles, Ricci and Flag Curvatures in Finsler Geometry, MSRI Publications, 50 (2004).
4. A. L. Besse, Einstein Manifolds, Springer-Verlag Berlin Heidelberg, (1987), 1-528.
5. H. W. Brinkmann, Riemann spaces conformal to Einstein spaces, Proc. Nat. Acad. Sci.USA, 9 (1923), 172-174.
6. C. N. Kozameh, E. T. Newman and K. P. Tod, Conformal Einstein Spaces, Gen. Rel.and Grav., 17 (1985), 343-344.
7. M. Listing, Conformal Einstein Spaces in N-dimensions, Ann. Glob. Anal. Geom.,20(2001), 183-197.
8. F. Massamba and J. S. Mbatakou, Induced and intrinsic Hashiguchi connections on Finsler submanifolds, Balkan J. Geom. Appl., 22(2) (2017), 50-62.
9. J.-S. Mbatakou, Intrinsic proofs of the existence of generalized Finsler connections, Int.Electron. J. Geom., 8, 1 (2015), 1-13.
10. G. Nibaruta, S. Degla and L. Todjihounde, Prescribed Ricci tensor in Finslerian conformal class, Balkan J. Geom. Appl., 23, 2 (2018), 41-55.
11. G. Nibaruta, S. Degla and L. Todjihounde, Finslerian Ricci Deformation and Conformal Metrics, J. Appl. Math. Phys., 6 (2018), 1522-1536.
12. W. K¨uhnel and H.-B. Rademacher, Conformally Einstein product spaces, E-print 2016,1-35.
13. Y.-B. Shen and Z. Shen, Introduction to Modern Finsler Geometry, Higher Education Press Limited Company and World Scientific Publishing Co. Pte. Ltd. (2016), 1-58.
14. P. Szekeres, Spaces Conformal to a Class of Spaces in General Gelativity, Proc. Roy. Soc. London, Ser. A., 274 (1963), 206-212.