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Abstract. Let R be the hh-curvature associated with the Chern connection
or the Cartan connection. In this paper, an intrinsic characterization of R-
FEinstein metrics is given and a theory on Finslerian warped product metrics
is developped. Finslerian metrics which are locally conformally R-Einstein are
classified.
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1. Introduction

Finslerian metrics are of considerable interest due to their rich structure in-
cluding Riemann, Randers, Minkowski and Berwald type metrics. Some areas
in which they have significant impacts are Differential Geometry, Einstein’s
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theory of General Relativity and Biology [1, 2]. A natural and important prob-
lem is the classification of metrics conformally Einstein. In 1923, Brinkmann
obtained in [5] the necessary and sufficient conditions for an n-dimensional
Riemannian manifold to be conformally Einstein. Later, Szekeres [14] in 1963,
Kozameh-Newmann-Tod [6] in 1985, Listing [7] in 2001 as well as Kiihnel-
Rademacher [12] in 2016 studied this problem from a different point of view,
both for (pseudo-)Riemannian metrics. This motivates us to study the above
problem for a general Finslerian metric.

In the present paper, we study and characterize Finslerian metrics which
are locally conformal to R-Einstein metrics. Unfortunately, the specificity of
the Finslerian metric and his associated fundamental tensor do not allow us to
use the same technics and tools as in the Riemannian case to obtain general
classifications of (locally or globally) conformally Finslerian R-Einstein metrics.
Hence, we exploit the pulled-back bundle approach used in [2] and introduce
a globally theory on conformal Finslerian R-Einstein geometry. Let M be an
n-dimensional C*° connected manifold and TM := TM\{0} its slit tangent
bundle. The submersion 7w : TM —s M pulls back the tangent bundle T'M
to a vector bundle 7*TM over TM. Given a Finslerian metric F on M and
g its fundamental tensor, we have introduced in [10], the following tensor.
The trace-free horizontal Ricci tensor of a Finslerian manifold (M, F') is the
application

C>=(TM,R)

BH . D(7*TM) x x(TM)
L (Ricj — 1Scalflg)(¢, X)

(& X)

where Ricl{f is the horizontal Ricci tensor, Scalg is the horizontal scalar cur-
vature and g := 7*g is the pullback of g by the submersion 7 : TM — M.

%
}_>

One of advantage of the tensor Eg , it vanishes when F' is an R-Einstein metric.
Furthermore, it is insensitive to whether we use the Chern connection or the
Cartan connection. Our main results in this work are given by the following.

Proposition 1.1. Let F be a Finslerian metric on an n-dimensional manifold.
F' is locally conformal to an R-Einstein metric F, with F' = e"“F, if and only
if the conformal factor e* is a solution of the equation

-2
EF(&-, 8j) - (n - 2) (VjViu - VﬂiVjU) + nT (VdVdu - Vduvdu) 9ij

n—1 6(F297‘S _ 2yrys)

q
+ Ya (VyuViu) oy

gklAsklgij =0. (l.l)

To determine the solution(s) of the equation (1.1), we consider it as a system
of partial differential equations in the conformal factor e* and curvatures asso-
ciated with F' on a neighborhood of the given manifold. The explicit solution
u can tell us how F' is constructed. Hence, we prove the following Theorem.
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Theorem 1.2. A Finslerian metric F on a 2-dimensional manifold is locally
conformally R-Einstein if and only if one of the following two cases holds :

(i) the conformal factor is constant and F is R-Einstein.
(ii) F is a Riemannian metric.

Note that, the warped product of two R-Einstein metrics with different
horizontal scalar curvatures is not R-Einstein. It is studied in [4] the special
case where the conformal factor only depends on the base of a warped product
Riemannian manifold. Thus we have the Theorem 1.3

Theorem 1.3. Let F' be a Finslerian metric on a cylinder Rx ]\24 of dimension
2 2 2
n > 3 and F a Finslerian metric on M. Let u be a C* function on Rx M such

that u(t,z) = u(t) for everyt € R and x EM Then F is locally horizontally
conformal to an Einstein metric F with F = e"F, if and only if the conformal

factor e* and F satisfy one of the following cases :

2
(i) e“tr) = ot 4+ B for some real constants o, 3 and F is horizontally
Ricci-flat. In particular, if « = 0 then § must be positive and hence u
18 constant.

(ii) e“t®) = cosh™! (\/%t + 7) for some real constant v and I3

18 horizontally Ricci-constant with positive horizontal scalar curvature
Scali .

(iii) e“(t®) = peos! (1 /%t—i—@) for some real constants u, 6 and ja

is horizontally Ricci-constant with negative horizontal scalar curvature
Scal?.

For non-warped product Finslerian metrics, we obtain the Theorem 1.4

Theorem 1.4. If the conformal factor on a 3-dimensional (respectively 4-
dimensional) Finslerian manifold is locally conformally R-FEinstein then the
horizontal Cotton-York (respectively the horizontal Bach) tensor vanishes.

The rest of this paper is organised as follows. In Section 2, we give some
basic notions on Finslerian manifolds. The Section 3 is devoted to study the
Finslerian R-Einstein metrics. In the Section 4, we derive Finslerian locally
conformal R-Einstein equation. The Theorem 1.2 is proved in the Section 5.
An intrinsic theory on Finslerian warped product metrics is developped in the
Section 6 and the Theorem 1.3. Finally the Theorem 1.4 is proved in the
Section 7.

2. Preliminaries

Throughout this paper, all manifolds are assumed to be connected and, all
manifolds and mappings are supposed to be differentiable of classe C*°. How-
ever, our results presented hold under the differentiability of class C*. Let M
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be an n—dimensional manifold. We denote by T, M the tangent space at x € M
and by TM := {J,cp; To M the tangent bundle of M. Set TM = TM\{0} and
7 :TM — M,7(x,y) — z the natural projection. Let (z,...,2") be a local
coordinate on an open subset U of M and (z!,...,2", y', ...,y™) be the local co-
ordinate on 7~} (U) € TM. The local coordinate system (z%);—1,, produces
the local coordinate bases {%}izl,wn and {dz'},—1 ., respectively, for TM
and cotangent bundle 7% M. We use Einstein summation convention : repeated
upper and lower indices will automatically be summed unless otherwise will be
noted.

Definition 2.1. A function F : TM — [0,00) is called a Finslerian metric
on M if :

(1) F is C* on the entire slit tangent bundle TM,

(2) F is positively 1-homogeneous on the fibers of TM, that is

Ve >0, F(x,cy) = cF(x,y),

(3) the Hessian matriz (g:;(x,y))1<ij<n with elements
10%F?(x,y
9ij(®,y) == 5 63;%(9;(;1)

is positive definite at every point (x,y) of TM.
Remark 2.2. F(x,y) # 0 for all z € M and for every y € T, M\{0}.
Consider the differential map 7, of the submersion 7 : TM —s M. The

vertical subspace of TTM is defined by V := ker(m,) and is locally spanned by
theset{F -,1<i<n}, oneach 7~ (U) C TM.

An horlzontal subspace H of TTM is by definition any complementary to
V. The bundles H and V give a smooth splitting

TTM =H&V. (2.2)

An Ehresmann connection is a selection of a horizontal subspace H of TTM.
As explain in [8], H can be canonically defined from the geodesics equation.

Definition 2.3. Let m: TM —s M be the restricted projection.
(1) An Ehresmann-Finsler connection of m is the subbundle H of TTM

given by
H = ker0, (2.3)
where 0 : TTM —s 7w*TM s the bundle morphism defined by
Lo, i3
0= po ® *(dy + Njdx?) (2.4)

with N} (z,y) = g’ (w’y) for

Gi(z,y) = ig (, y)[gg],f( y)+%( Y) — %q;k(:v y)}y y*. (25)
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(2) The form 0 : TTM —s 7T M induces a linear map
9|(x,y) : T(z,y)TM — T M, (2.6)

for each point (z,y) € TM; where © = m(x,y).
The wvertical lift of a section & of m*TM is a unique section v(§) of
TTM such that for every (x,y) € TM,

T (V)| (@) = O(a,y) and O(v(€))l(z,y) = E(a,y)- (2.7)
(3) The differential projection Ty : TTM —s 7 TM induces a linear map
el * T TM — To M, (2.8)

for each point (z,y) € TM; where © = m(x,y).
The horizontal lift of a section & of #*TM s a unique section h(§) of
TTM such that for every (x,y) € TM,

We have the following.

Definition 2.4. Let p1,p2,q1 and gz be nonnegative integers, non both zero.
A tensor field T of type (p1,p2;q1,q2) on (M, F) is a mapping

T : TP (7T M) x TP (T*TM) x D9 (x*T M) x T (TTM) — C=(TM,R)
which is C>°(TM,R)-linear in each argument.
Remark 2.5. In a local chart,

T — Tﬁ1~.:kpll1..jlp2 O, ®"'®8km ®0y, ®---®5lp2 RATN Q... Qdr'n Qe ® ... Qe

11.-0q1 71+ Jqg

where {0, = axikr}r:l,m,pu {01, Ym=1,...po and {e7s}s—1,. 4, are respectively
the basis sections for 7*TM, 7*T*M (dual of 7*TM ) and T*TM (dual of
TTM).

Example 2.6. (1) A vector field X on TM ‘s of type (0,1;0,0).
(2) The fundamental tensor g is of type (0,0;2,0).
(3) A section & of m*TM is a tensor of type (1,0;0,0).

The following lemma defines the Chern connection on 7*T'M.

Lemma 2.7. [9] Let (M, F) be a Finslerian manifold and g its fundamental
tensor. There exists a unique linear connection V on the vector bundle 7T M
such that, for all XY € x(TM) and for every £, € T(7*TM), one has the
following properties :

(i) Vxm.Y — Vym.X = m.[X,Y],

(i) X(g(&m) =g(Vx&n) +g(§, Vxn) +2A(0(X),&,n)

where A := g %’;ﬁf dz’ ® dz? @ dz® is the Cartan tensor.
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One has

9 i 0 i Ly (09:  Ogu 09k
V.t e = T T 50" (5 + (210)

where

b aw Mgy~ g

The generalized Cartan connection on 7*T'M is given as follows.

{5 =9 N _pd } with N? =T, ", (2.11)
i=1,...,n

Lemma 2.8. [9] Let (M, F) be a Finslerian manifold and g its fundamental
tensor. There exists a unique linear connection °V on the vector bundle w*T' M
such that, for all X,Y € X(TM) and for every §,n,v € I'(n*TM), one has the
following properties :
(i) °Vxm.Y—Vym.X =X, Y]+(A(O(X), 7Y, o))ﬁf(A(W*X, o0(Y), o))ri ,
(ii) X(g(&mn)) = g(°Vx&n) + g(&,°Vxn) where A is the Cartan tensor
and (¥ the section of ™*TM dual to A defined by g (/1(5,77,0)ji V) =
A(&,n,v).

3. Finslerian R-Einstein metrics

3.1. First curvature R associated with the Chern connection or the
Cartan connection.

Definition 3.1. The full curvature of a linear connection V on the vector
bundle T*TM over the manifold TM is the application
5 X(TM) x x(TM) x T(x*TM) — D(7*TM)
(X,Y,€) = O(X,Y)E = VxVyl—VyVxé —Vixy
By the relation (2.2), we have
Vx =V3+ Vg,

where X = X + X with X e T(#) and X € D(V).

Using the metric F, one can define the full curvature of V as :

(&, X,Y) = g(o(X,Y)E,n)

J(SX,Y)E+ O(X,Y)E+ o(X, V)E+ (X, Y)E )
R(&n, X, Y)+P(§n,X,Y) +Q(§n, X,Y),

where

R(¢,m, X,Y) = g(¢(X, V), m), P&, X,Y) = g(¢(X, V)&, m)+9((X,Y)E )
and
Q(&,n, X, Y) = g((X,Y)&,n)
are respectively the first (horizontal) curvature, mized curvature and vertical
curvature.
In particular, if V is the Chern connection, the Q-curvature vanishes.
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Proposition 3.2. Let @ be the full curvature tensor associated with the Car-
tan connection. Then in the horizontal direction, °® = ®.

Proof. If X,Y € H then X = X = X*% and Y = Y = Y"%. By the

Sk Sz

relation (2.4), we get

. o 1 ) o .
0(X) = o @F(dwa;dxﬂ) (X*
Xk o0 Xk 09

= —Ni§l— + N6 —

F s ox’ + F 35’“8:16’
= 0. (3.1)

1)
5%

Using the relation (3.1) together with the Lemma 2.7 and the Lemma 2.8, we
get ¢V = V for horizontal vectors fields on TM. Thus, the curvatures of ¢V
and V are equal. (I

3.2. Horizantal Ricci tensor and horizantal scalar curvatures. With
respect to the Chern connection or the Cartan connection, we have the follow-
ing.

Definition 3.3. The horizontal Ricci tensor Ricg and the horizontal scalar
curvature Scalg of (M, F) are respectively defined by

Ricy (€, X) = ¢"R(£ 0, X,0), (3:2)
Scal?? = traceg(Ricg),g::W*g. (3.3)

Remark 3.4. Letl := %02,; be the distinguish section for m*T'M. The tensor

Ricl can be expressed in term of the classical Akbar-Zadeh Ricci curvatures

[13] Ric and Ric;; as follows.

Ric(,h(1)) ‘2GR, h(),d;)
= gYI'R(8;,8;,, Ok, 0;)IF

= TRic
= ZZZJ Ricij.
3.3. Finslerian R-Einstein metric. It is known [3], F is Einstein if there
exists a C'°° function k£ on M such that
Ric= (n—1)k. (3.4)

Now, we introduce the following.

Definition 3.5. A Finslerian metric F' on an n-dimensional manifold is R-
FEinstein if

1
Ricll = Hscalg g. (3.5)
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Remark 3.6. If F satisfies (3.5) for a constant function Scall (respectively
for Scalg = 0) then F is said to be horizontally Ricci-constant (respectively,
F' is called horizontally Ricci-flat metric).

Remark 3.7. If F' is a Finslerian R-Einstein metric on an n-dimensional
manifold M then its associated horizontal scalar curvature is a function on M.
That is, for any (x,y) of TM, ScalZ(z,y) = n(n — 1)k(z).

Definition 3.8. Let T be a (p1,p2;0,0)-tensor on (M,F) and X € TTM.
The covariant derivative of T in the direction of X is given by the following

formula :
(VXT)(51,...,§p1,X1,...,Xp2) = X(T(fl,...,fpl,Xl,...,sz))
p1
- Z[T(gl,'nvvxgia"'agpquw“vXpQH
=1

D2

— D TG &prs X1y oo (VX X), s Xy

Jj=1
D2

)]

= D TG ons&prs X,y MV XO(X;)), oy X, )]

j=1
D2

— D TGy &prs Xy oy 0(Vxm X)X, )]

j=1
D2

- Z [T(glv ~~~7£p17X17 s v(vXQ(Xj))7 "'7XP2)] :

j=1
We obtain the Finslerian horizantal Bianchi identity given in the following.
Lemma 3.9. If {,n € D(m,TM) and X,Y,Z € x(TM) then

Proof. The Lemma 3.9 is obtained from the symmetry of V and the Jacobi
identity and by the Definition 3.8 applied to the first curvature R. (I

3.4. Schur’s type lemma. We prove a Schur lemma for Scalg .

Lemma 3.10. If F' is horizontally an Einstein metric on a connected manifold
of dimension n > 3 then its horizontal scalar curvature is constant.

Proof. If F' is horizontally an Einstein metric then the relation (3.5) holds.
Applying the horizontal covariant derivative on each side of the relation
(3.5), we obtain

, . 1
ViRick (9;,0;) = - (ViScaly)g;;
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where V; = V4 . Multiplying this last equation by g’* and setting ¢**V; = V*
we get

» A 1
V'RicZ(9;,0;) = —V,ScalZ. (3.7)
n
By contracting twice on equation (3.6) written in a local coordinate, we have

1 . .
§vjsca1§;f =  V'Rick(9;,0;)
57 1
=y ~V,Saalf. (3.8)

When n > 2, the equations (3.7) and (3.8) together with the Lemma 3.7
imply

0 = V;Scalyf
B dScal
- 09
Hence, Scalg must be constant. ]

4. Finslerian locally conformal R-Einstein equation

4.1. Conformal change of Finslerian trace-free horizontal Ricci ten-
sors.

Definition 4.1. A Finslerian metric F' on a manifold M is locally conformally
R-Finstein if each point x € M has a neighborhood U on which there exists a
C*-function u such that the conformal deformation F of F', with F= e"F, is
an R-FEinstein metric on U.

Lemma 4.2. [10] Let F' and F be two Finslerian metrics on an n-dimensional
manifold M. If F is conformal to F', with F' = e“F, then the trace-free hori-

~H
zontal Ricci tensors B and Ez are related by

~H

E; = Eg—(n—2)(Hu—duodu)—(nn;2)

H
(A + ||vul|?) g + BF
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where ng is the (1,1;0,0)-tensor on (M, F) given by

U (€, X) = (2—n) [A(Vu, B(X),€) + A(Vu, 7. X, B(h(¢)))]
+(n —4)AB(R(Vu), 7 X, §))

+%gij [2(n = 2)A(Vu, 8, B(3))
~3A(B(h(Vu),0;,0.)) g (m ).
+97 |9 (O(X, h(O(D;, h(€))).3:) — g (80, HO(X, h(€)). ) |
+9 |9 ((Vx©)(8;, b)), a) 9 ((V,0)(h(€). X),0))|
1

——g"g" [AB(h(©;x), 01, 0:)) — AB(M(Ow), 05, 0:))] g(&, 7. X

g g (ViO)30,0) — 9 (V00 0)] g€, mX), (4)

for every & € T(x*TM) and X € x(T'M) with 0, = 0(9;,9;) and B is the
application which maps 7T M to n*TM defined by

B =B.9; ® dx’ (4.2)
with
;1 O(F?g" —2y'y")
Bl = °F (V,u) 5 . (4.3)

4.2. Proof of the Proposition 1.1.

Proof. Let F and F be two conformal Finslerian metrics on a manifold of

~H
dimension n. If F' is conformally R-Einstein then Ez vanishes. By the Lemma
4.2, in a local chart we have

0 = |EY —(n—-2)(H,—duodu)— ("n;m (ATw + ||vul?) g} (8;,8;)
O (05, 0;) (4.4)
where
v (0,0;) = 2= n)[A(Ve B@;),0) + A(vu, 7.0;, Bb(@))]
+(n — 4)AB(h(Vu), 7.0;,,))

+%gkl [2(n— 2) A(Vu, O, B(8)))) — 3A(B(h (w),al,ak))}g<ai,méj).

+gw[g (@(a},h(e(al, @:)))), ak) (9(5j,h(®(5z,h(8i>))73k)}

+9" (g ((7,0)(@1,8(0),0¢) — 9 ((V10)(a(@:), 9y), 01 ) |
M [ABD(O),1,0,)) — AB(Ow),2.,0,) | g

- ig"s 1 (V10)0,00) — 9 ((7,0)10,0,) g5
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Using the relation (4.2), we have B(J;) = Bg16;20s, = B 0s, and
B(h(vu)) = B510s, @ dz*2(h(V'ud,)) = V'ubB;' d;,. Thus, from (4.5), we have

L= (2= n) [A(VuB(@;), 8) + A(Vu,m.0;, Bh(0))]
+(n — 4 ABh(Vu), 7.0;,0;))
= (= OB Ay — (0= 2) (V2B A, + V2B Ay, )

o= g [2n - 2)A(Vu, 0k, B)) ~ BAB((Tu), 01, 00) g
= —%gklvé”zu{ — 3Bs,51 A5, k1 + 3Brs1As 15, — (20 — 1)BkslA51152}gij,

I = =g ABBO),0,0,) — ABMOW),0:,0.) g

L= g"[g (60 h(O( 1)), 0 ) — g (O, h(O,,h(0:)). 0 )|
- klms[( (0, B(O(A1,1(0,))), 0k ) — g (O(81,h(O(D,h(0,))). 0 )]
= Mg o (00, (O3 h(2))), 1) ~ 9 (©(21, W(O(:, b)), ) |
= —I,

I o= g (Vi) 0) — 9 (V:0), 0] g

Lo = ¢ [9((Vx©)(8.h()).8:) — g (V,0)(B(E), X). )]
= I

Hence, putting the expressions of I, Is, I3, I4, I5 and I in the right-hand side
of (4.4) we obtain the equation 1.1. O

Remark 4.3. The equation (1.1) is called Finslerian locally conformal R-
FEinstein equation.

5. Locally conformally R-Einstein metrics in dimensions 1 and 2
5.1. For n = 1. Every Finslerian metric is conformally R-Einstein.

Theorem 5.1. Let (M, F) be a Finslerian manifold of dimension one. Then
(M, F) is always R-flat.

Proof. This follows from the Lemma 2.7 and the skewsymmetry the curvature
R. O

5.2. For n = 2: Proof of the Theorem 1.2.
Proof. When n = 2, the equation (1.1) reduces to

a(FQQTS _ 2yrys)

Dy gklAsklgij =0. (5.1)

A 1
EF(&, 83) + E (Vruvqu)
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Contracting (5.1) by g% yields

1 A(F?g" —2y"y°) gt
V,uViu = 2
3F ) dy4 Askt = (5-2)
Using the famous Euler theorem on homogeneous functions (see [2], page 5),

applied on functions y° Agp; = y° %%“ = 0, we have
o(—2y"
A2wy) a;}qy )gklAskl = =2y Asug™'s; = 0.

Since F' is a Finslerian metric, F(z,y) # 0 for every (z,y) € TM and since g
is positive-definite the g*' functions do not vanish for any k,1 € {1,2}. Hence,
the only solution of the equation (5.2) are V,.u =0 or A = 0.
(i) If V,u = 0, the conformal factor u is constant. Further, if  is constant
then by equation (5.1) EZ vanishes.
(ii) If A = 0, by Deicke’s theorem, F' is Riemannian. Hence, the result
follows by the fact that any Riemannian metric on a 2-dimensional
manifold is Einstein (see [3]).

Conversely, if the conformal deformation is homothetic and F' is horizontally
locally Einstein then the relation (5.1) is satisfied. Thus, if A vanishes it is
known that F' is Riemannian and, when n = 2, every Riemannian metric in
conformally Einstein. O

Example 5.2. For a Finsler-Minkowskian metric on R?, F(z,y) = F(y). The
conformal deformations of F' are of the form F =cF for all ¢ > 0. Since, the
R-curvature on R? vanishes, the tensor E?I vanishes. Then F is globally (and
automatically locally) conformally R-Einstein.

6. Locally conformally R-Einstein metrics on a cylinder of dimension
n>3

6.1. Warped product of Finslerian metrics. Let ]\14 and ]\24 be two man-
ifolds. The set of all product coordinate systems in ]\14 X 1\24 is an atlas on
M =M x M called product manifold of M and M.

Example 6.1. The product Rx ]\2[ 18 called an infinite cylinder over ]\14
Example 6.2. In the Example 6.1, if we replace R by an open interval (1,¢),
we obtain a finite cylinder (1,e)x M over M.

k—1
Remark 6.3. In general, the pmduct mamfold of k manifolds M, ., M and
M is the cartesian product M M X X M

Let M and M be two C manifolds. For every (z1,x2) €M x ]\24, we have
the following properties derived from ]\14 and ]\24[ .
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(1) The projections
D ]\14>< ]\24—>]\;[ such that ;J(xl,xg):xl
12? ]\fo 1\24—>]\;[ such that ]29(1131,1:2):3:2
are C"i" sumeersions. ) .
(2) dim(M x M) =dim M +dim M.
The warped product manifold of two Finslerian manifolds is defined as fol-
lows.
Definition 6.4. Let (]\14, 1;) and (]\24, 1?‘) be two Finslerian manifolds. Let f be
a positive C* function on ]\14 The warped product of (]\}[7 ]}‘) and (]\24, 1?) s a
manifold M =j\14 X ¢ ]\24 equipped with the Finslerian metric

F:T M xT M— RY (6.1)
such that for any vector tangent y € T, M, with x = (x1,22) € M and y =
(Y1, 92),

F(x,y) = \/F2 (71,Px y) + f2(P (21, 22)) F? (22,P4 y) (6.2)
wherell) and;? are respectively the projections of]\;[ X ]\24 onto 1\14 and ]\24

Remark 6.5. Let F be a Finsler metric on a warped product manifold ]\14
x s M.
(1) F is not C* on the tangent vectors of the form (y1,0) nor (0,y2) at a
point (1, x2) eM X § M.
(2) M is called the base manifold while M s the fiber manifold and f is
called the warping function.

2

£ =1 then (11 g N1 F? (0be ) + P20 (@1,20)) 2 (@a.b )
reduces to a Finslerian product manifold (]\14 X ]\if, \/F2 (a:l,;b* y)+ F? (mg,lzJ* Y).

The function F' defined in (6.1) and (6.2) is a Finslerian manifold. More
precisely,
(i) FisC®on T M xT M since F and F are respectively C on T M
and T ]\24 .
(ii) F is homogeneous of degree 1 in y = (y1,y2) € T, M. Namely, for any
c> 0,

Fe) 2 VF? @1, () + (1) 2 (s, ()

= c\/Fl'2 (£1,y1) + fz(xl) FZZ (‘r%y?)
cF(z,y).
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(iii) If ny and my are respectively the dimensions of ( M , 1}‘) and ( M , lé),
each element of the Hessian matrix (g;;(2,¥))1<i j<ni+n, of 2F2, has

the form :
0 [3F2(x,y)]
gij(w.y) = —h
1 9% |F? (x1,y1) + f2(x1) F? (22,92)
o2 0yioy’

0* F? ($27yz)
Ay 0y}

132 };2 (Jil,yl) 1
P — =2 (21)
2 Y10y 2
for every point (z,y) = (21, Z2,y1,Y2) € T ]\14 xT ]\24 Thus,

(o _ (élhj (xlayl)) 0 > 6.3
(gm( ,y)) ( 0 (5” ($2,y2)) ( )

g - 1P (ai) g Lo )P F e2)
where 9;5 (21,91) := 3 By O] and 9;; (w2,y2) = 5. (71) Byt
So the fundamental tensor g of F' is positive definite at every point

o 1 o 2
(z1,22,91,y2) € T M xXT M since 517 and 5 are.

6.2. Curvatures associated with warped product Finslerian metrics.
o 1 1 ° 2 2
Given the submersions 7: T M ——M and 7: T M— M , the fundamental ten-
2 1 2
sors !IJ and g associated with F and F are Riemannian metrics on the respective

pulled-back tangent bundles 7* T ]\14 and ™™ T ]\2/[ . Thus, T gives rise to the
Ehresmann-Finsler connection

1 o 1 1 1
H= ker6, where 6, : TT M—7" T M (6.4)
while 7 give rise to the Ehresmann-Finsler
1= kerlo where 05 : TT M—s7" T M . (6.5)

The Ehresmann-Finslerian product connection H is given by the product
form 6 of #; and 65, that is

0 =0, %0,:TT M xTT M=T(T M xT M) —m* T M x 7 T M (6.6)
such that
kerf = ker(61 x 03) = kert @ kerfs. (6.7)

Now, let ]1/ and )j be the vertical subbundle of TT ]\14 and TT ]\24 , respec-
tively. We obtain the following decomposition

TT(M x M) =HOVOHDV . (6.8)
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Proposition 6.6. Let (]\14, 1}‘) and (]\i[, 1?‘) be two Finslerian manifolds. On a
1 1 1 1 2 2

warped product manifold M =M X ]\24, ifée(m* T M), e T(n* T 1\24) and

)1(6 X(T ]\14) then

(i) V)l( éz%xé where V is the Chern connection associated with (]\14,}17)
(i) V, é= 1 X ()¢

and the relation in (i7) follows. O

As a direct consequence, we have
Corollary 6.7. Let (]\14,13") and (]\2/‘1,1%) be two Finslerian manifolds. On a

warped product manifold M .y x5 M, if 5,7176 F(ﬂ'l* T _]\14), )1(,}}'6 x(T ]\14)
and X¢€ x(T ]\24) then

Proof. The proof follows from the Proposition 6.6. O

6.3. Proof of the Theorem 1.3. We consider the special case where the
conformal factor only depends on the base manifold M of the product M x M.

2
Proof. A Finslerian metric F' on a cylinder Rx A can be written as F' =

2
V 2+ }27‘ where Jf" is a Finslerian metric on ]\2/[ . Further, if F is locally confor-
mal to the R-Einstein metric e*®*) F, then by Proposition 1.1, we have
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Case 1 :

Case 2 :

Case 3 :
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ifi =7 =1, that is t = y* = y/, the equation (1.1) becomes
0 = Ep(8:,0) — (n—2)(ViViu— ViuViu)

-2
+% (VdVd'LL — vdUVdu) gtt
(n—1) IF?g" = 2y"y*) 1
+ InF (vruvqu) ayq g Asklgtt

. A 1
= RICF(at,at) — ﬁScalggtt

—(n — 2) (Vtvtu — VtUVtU)
n—2
+%gtd (Vtvdu - Vtuvdu) gtt
(n—1) B(F2g™ — 242)
2nF ot
since u = u(t) and y? =t is a coordinate on R. It follows that

+ (ViuVtu) 9" A

1 H
n calyp

e (=) 2 )

(n—1) [ 1\ O(F2—2t2)
T ouF (“) a9 <0
= Scal? +(n—1)(n-2)u —u?). (6.9)

ifi=1andj€{2,3,..,n} orj=1andi€ {2,3,...,n} that is t # ¢’
or t # y7, by the Proposition 6.7 and by the fact that u = u(t), each
term in the left-hand side of the equation (1.1) vanishes.

ifi,j € {2,3,...,n} thatist # y* and t # y/, the equation (1.1) becomes

0 = Ep(da,ds) — (n—2)(VsVau— VauVsu)

-2
—l—% (Vdvdu — Vdquu) Jap

(n—1) o OF?g"™ = 2y"y%) 4
onF (VTUV U) ayq g Asklgaﬁ
~ 1 2
= Ric;(0a,05) — EScalg Gap - (6.10)

~ 52
Therefore F' = e*F = ¢“\/t2+ F is locally an Einstein metric if and only

if

Scalg +(n—1)n-2)u" —u?
. AN _ 1 H?2
Rlc;((?a, 0p) nScal; 9as
{ Scalg +(n—1)(n—2)u —u?)

R A1
E;(@a,ag) for o, €{2,...,n}. (6.11)
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From the system (6.11), [ is R-Einstein. By the Lemma 3.10, Scalg =
constant. Denote this constant by s. The system (6.11) becomes u —u'?
m = 0 or equivalently

"

W —u? s =0 (6.12)
where s* 1= 57— We set e = p 1= %. Then
’ /2 _ " /2
u:fg,uz:sp—2 andu:L;r(p.
¥ P P
The equation (6.12) becomes
¢ — st =0. (6.13)

We distinguish three cases :
(i) s* =0. The general solution ¢ of the equation (6.13) is
p(t) = 1t + co.

Thus, the conformal factor satisfies e*() = 0 Ht) = at + B. In par-
ticular, if &« = 0 then  must be positive since e* is the conformal
factor.

(if) s* > 0. The general solution ¢ of the equation (6.13) is

o(t) = cosh(x/?*t + 7).
(iii) s* < 0. The general solution ¢ of the equation (6.13) is ¢(t) =
C5C08 (\/—s*t) + c6sin(\/—s*t). Setting c5 = ucosf and cg = —usind
the last relation can be expressed as ¢(t) = [cos (\/—s*t + 9)}

Conversely, if one of the cases (i), (i) and (i) is holds then e"F is R-
Einstein. g

Example 6.8. Let ]?‘ be a Finslerian metric on the sphere S*~1 with positive

constant flag curvature k = 1. We can show ]?‘ is of horizantal scalar curvature
S’calg = (n—1)(n —2). Then the Finslerian metric F = \/ t?>+ ]§2 is locally
conformal to the R-Einstein metric F = cosh™“tF fort € (1,00).
7. Non-product metrics locally conformally R-Einstein

We give the following.

Definition 7.1. Let (M, F) be a Finslerian manifold of dimension n > 3.
(1) The horizontal Schouten tensor of (M, F) is the (0,0; 1, 1)-tensor given

g_ 1 (.5 1 g
Sy = 5 Ricp 2(n_l)Scang . (7.1)
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(2) The horizontal Weyl tensor of (M, F) is the (0,0;2,2)-tensor defined
by

Wl =—R—-go SE. (7.2)

Its components in a local coordinate are defined as follows,

Wi(8;,0:,0;,0r) = R(y,0;,0;,0%)
~91;8F (9, 01) — gix Sr (91, ;)
+glkSF(8iu(§j) —&-gijSF(alﬁk). (7.3)

(3) The horizontal tensor of type Cotton-York of (M, F) is the (0,0;1,2)-
tensor Cg defined by

CH(&, X, V) = (VxSE) (6,Y) - (Vv SH) (6, X) (7.4)
for every £ e D(n*TM) and X,Y € X(TM) In a local chart,
Cr(0:,9;,0r) = (V;Sr)(9;,0) — (ViSF) (8:,0;). (7.5)

In dimension greater than 3, we introduce in Finselrian Geometry the fol-
lowing tensor.

Definition 7.2. The horizontal tensor of type Bach of a Finslerian manifold
(M, F) is the (1,1;0)-tensor B2 defined by

Br(0;,0;) = V* Crp(0;,0;,01) + S%& Wr (01,05, 01, 0;). (7.6)
We have the following properties.

Lemma 7.3. Let (M, F) be a Finslerian manifold of dimension n > 3. Then,

(1) the horizontal tensors of Weyl and of Cotton-York tensors are related
as follows :

V! Wr(81,0;,0;,0) = (n— 3)Cr(8;,9;, 0)

(2) if F is horizontally an Einstein metric then its horizontal Cotton-York
tensor vanishes

Cr(0:,0;,01) = 0.

Proof. (1) Contracting the Finslerin second Bianchi identity given in Lemma
3.9 we get ¢°' |V Ruiks + ViRiig + VoRugge| = 0. Equivalent

—VjRiCF(ai,ék) + VkRiCF(ai, éj) + VlRlijk =0.
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Using this relation we have
VIWE(,0,0;,0k) = ¢°*VWp(d),0;,0;,0)
7.3 A A
(7.3) glsvs{R(al,ahaj?ak)

— [RiCF(az, 9;)gix — Ricr(0i,0;) gk

+Ricp(0;, ék)glj — Ricp (0, ék)gij}

Scalg
o 1) 2 ik — 9] }
n —

= m(VleCF(ai,ak) — VlecF(aiﬁj))
___n=3
2(n—1)(n —2)

(n —3)Cr(8;,0;, ).

(Vchalggik - VkScalggij)

(7.5)

(2) If F is R-Einstein then, by Lemma 3.10, Scal% is constant. Hence,

Cr(0;,05,0k) (V;Sr) (0, ) — (ViSr) (8;, 53‘)
1Y (gic - 1 g 5
Vj{nf2 (RICF 2(n1)Scang>}(8,,8k)

(Ricfé —

7Vk[ Scal?g) }(ai,éj).

_
n—2 2(n—1)

Hence, formula (3.5) implies relation (7.7).
(I

Lemma 7.4. Let F' be a Finslerian metric on a manifold of dimension n > 3.
If F is a conformal deformation of F, with F = e“F, then

(1) the horizontal Schouten tensor behaves as follows :

Agg(ai, éj) = S’;f(&z, éj) — V]Vlu + Viuvju + hgij (77)
where
h: = —EV’“UV u+ 4V5ugkl [(n + 8) Bt Asks, — 2B A }
o= 5 k Tl(?’L — 1) 1 sksy s lks1

g { [1000. m01)).50) - 906, hE,). 1)

+mm@mw—mW@mmﬂ_
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(2) if a horizontal (1,1,0)-tensor T satisfies Tr(9;,0;) = TF(W*éj, h(9;)),
for any 1,57 =1,...,n, then
—QVJ"U,TM — ViuTjk — VkuTij
+9i; Tr(Vu, O0k) + gk Tr(0;, h(Vu))
—Tr (9, MO) i) — Tr(Oij, ). (7.8)
(3) the horizontal Cotton-York tensor behaves as follows :
~ ~ ~ ~ ~ ~ ~ H N ~
Cz(05,05,0,) = Cr(8;,05,0%) + Wip(Vu, 8,05, 0x) + Wi (8;,0;,0r)
where
WuCg (0, éj» o) = V; (Viuvku + hgik) - Vi (viuvju + hgij)
4T, ViuViu — I ViuV
—i—gjlvlu(vkviu — hgik) - gkzvlu(vjviu - hgij)
+9i;ViViawwt + Gik Vi Viguyt
—VjV@iku + V@ikuvj‘u + VkV@iju - V@ij uViu.

Proof. The assertion (1) in Lemma 7.4 is obtained by using the relation (7.1)
and the lemmas 5 and 6 in [11].

To obtain the relation (7.8) in Lemma 7.4, we consider a (1,1, 0)-tensor T4
on (M, F). Then for every vector fields X,Y on TM and for any section & of
the vector bundle #*T'M, we obtain

(VTH) (€.Y) = Vx(TH(EY) - THTxEY) - TH(E h(VimY)) (7.9)

where V x is the covariant derivative with respect to Fina given direction X.
We have

(VxTH) (V)

Vx(TE(EY)) = TF (Vx¢ + du(m X)¢ + du(€)m. X

~g(m.X,€)Vu+ O(X,h(£)), Y )

~TH(¢, h(Vxm,Y + du(m, X)m,Y

+du(m,Y)m X — g(m. X, m.Y)Vu+ 0(X,Y)))

= Vx(Tr(Y)) - 2(Vxu)Tr(Y)

~(VieW)Tr(m.X,Y) = (Vyu)Tr(, X)

+9(6, T X)Tp(Vu,Y) + g(m. X, 7Y )Tr (€, Vu)

—Tp(, h(0(X,Y)) — Tp(O(h(¢), X),Y).
Setting £ = 9;, X = éj and Y = 5k, we obtain the relation.

From the these two properties, we obtain the assertion (3) in the Lemma
7.4. O
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7.1. Proof of the Theorem 1.4 in dimension n = 3. Let F and F be two
conformal Finslerian metric, with F' = e F', on a manifold of dimension n > 3.
Then

Cr(0,,0;,0,) ‘= (%gﬁ) (0i,0n) — (Vksﬁ> (9i,0;)
g (vjéﬁ) (95, By) — (v,js'ﬁ) (9;,9;)
~V,juS (9, 0)) + ViuS #(8;,9)
+9i5S5(Vu, O) — ginS7(Vu, 9))
+S5(Oi, 0;) — Sp(©45, k).
= Vv, {éﬁ(ai,ék)} ~ S5(V;0:, )
=S5 (05 1(V;m.dr)) — {Vk [gﬁ(ai»éj)]
85 (V40i,0;) — S5(0: h(Vym. ;) }
~V,uS (9, 0) + ViuS #(8;,9)
+9i;S5(Vu, 8) — girSF(Vu, 9;)
+§ﬁ(9ik,éj) - gﬁ(@ij,ék)
= Cz(:,9;,0)
+V; { — Vg Vi + ViuViu + hgik}
-V { —V;guViu+ VuVju + hgij}
+] = Vi V90,0 + Voo,uVu+ hg(Vid;, m.0))|
- [ — ViV, o1+ Vi, o.uViu + hg(V;0;, w*ék)]
—g;V'u [sg (95, 9%) — ViViu + ViuViu + hgik}
+9uV'u {Sg(@i, 9;) — V;Vud, + ViuViu + hgij}
+9ij [Vlusg(ala ) — Vth(Vu)u}
— ik {vlusg(al, b;) — vjvh(w)u}
+ (8% (O, ;) = V;Ve,u + Vo, uVjul

— {Sg(@ij, ék) — VkV@iju + V@M uvku} .

Therefore

Cx(0,0;,0,) = Cz(0h,0;,0) + V'uW (0,0, 85, 0) + W (8,85, 6),



168 S. Degla, G. Nibaruta and L. Todjihounde

where
cy A A
R (00,00 = V;(ViuViu+ hga) - Vi (ViuVu + hg; )
A+ ViV ju — LV Vi + gﬂvlu(vkviu - hgik)
—gszlU(VjViu - hgij) + 9iiViVh(vu)t + 9ik Vi Vh(vu) U
—VjV@iku + V@muvju + VkV@iju — V@U uV .
If F is R-Einstein then by the Lemma 7.3

When n = 3, the tensor W% vanishes and hence the equation (7.10) reduces
to

~ ~ H ~ ~
Cr(8;,0;,0) + WS (9;,0;,0k) = 0. (7.11)
If u = constant then CH = 0.
7.2. Proof of the Theorem 1.4 in dimension n = 4. From the Lemma 7.3,
if F'is R-Einstein metric then Cz vanishes. Then the equation (7.10) holds.
Applying V* to this equation, using the Definition 7.1 and the equation (7.10)
again, we get
0 = Bp(d:,0;) — SEWp(dy,0:, 01, 0;)
— [VEVu — (n — 3)VFuV'u] W (0, 8;, Ok, 9;)
b CH A~ ~ CH ~ ~
VT (05,05, 0k) + Wi T (05,05, Ok). (7.12)
Since F is locally an R-Einstein metric, the equation (1.1) is equivalent to
A 1
0 = SF(ai, 8J) — ﬁJggij — Vjvzu + VquJu
1
+E (VdVdu — Vduvdu) 9ij

_ F2 TS _ 9T yS

kl .
2n(n — 2) ayq g Asklgm

where J;I is the trace of Scalg. Raising both indices and applying W g (9}, 9;, @-, ék)
to this equation, using the relation (7.7) in Lemma 7.4 and the equation (7.12)
we obtain

0 = Br(8;,9;)+ (n—4)Wg(Vu,d;,d;, vu)
k k1 wCF (9. 4. A
+ [(TL — 3)V u—V ] Lpu F(&,aj,ak)

Therefore, in dimension n = 4, we have By (9;, 9;)+ (Vku—vk)LT/uCg (0:,0;,0k) =
0.
If u = constant then B = 0.
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