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Abstract. Let R be the hh-curvature associated with the Chern connection

or the Cartan connection. In this paper, an intrinsic characterization of R-

Einstein metrics is given and a theory on Finslerian warped product metrics

is developped. Finslerian metrics which are locally conformally R-Einstein are

classified.
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1. Introduction

Finslerian metrics are of considerable interest due to their rich structure in-

cluding Riemann, Randers, Minkowski and Berwald type metrics. Some areas

in which they have significant impacts are Differential Geometry, Einstein’s
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theory of General Relativity and Biology [1, 2]. A natural and important prob-

lem is the classification of metrics conformally Einstein. In 1923, Brinkmann

obtained in [5] the necessary and sufficient conditions for an n-dimensional

Riemannian manifold to be conformally Einstein. Later, Szekeres [14] in 1963,

Kozameh-Newmann-Tod [6] in 1985, Listing [7] in 2001 as well as Kühnel-

Rademacher [12] in 2016 studied this problem from a different point of view,

both for (pseudo-)Riemannian metrics. This motivates us to study the above

problem for a general Finslerian metric.

In the present paper, we study and characterize Finslerian metrics which

are locally conformal to R-Einstein metrics. Unfortunately, the specificity of

the Finslerian metric and his associated fundamental tensor do not allow us to

use the same technics and tools as in the Riemannian case to obtain general

classifications of (locally or globally) conformally Finslerian R-Einstein metrics.

Hence, we exploit the pulled-back bundle approach used in [2] and introduce

a globally theory on conformal Finslerian R-Einstein geometry. Let M be an

n-dimensional C∞ connected manifold and T̊M := TM\{0} its slit tangent

bundle. The submersion π : T̊M −→ M pulls back the tangent bundle TM

to a vector bundle π∗TM over T̊M . Given a Finslerian metric F on M and

g its fundamental tensor, we have introduced in [10], the following tensor.

The trace-free horizontal Ricci tensor of a Finslerian manifold (M,F ) is the

application

EH
F :

Γ(π∗TM)× χ(T̊M) → C∞(T̊M,R)

(ξ,X) 7→ (RicHF − 1
nScalHF g)(ξ,X)

where RicHF is the horizontal Ricci tensor, ScalHF is the horizontal scalar cur-

vature and g := π∗g is the pullback of g by the submersion π : T̊M −→ M .

One of advantage of the tensor EH
F , it vanishes when F is an R-Einstein metric.

Furthermore, it is insensitive to whether we use the Chern connection or the

Cartan connection. Our main results in this work are given by the following.

Proposition 1.1. Let F be a Finslerian metric on an n-dimensional manifold.

F is locally conformal to an R-Einstein metric F̃ , with F̃ = euF , if and only

if the conformal factor eu is a solution of the equation

EF (∂i, ∂̂j)− (n− 2) (∇j∇iu−∇iu∇ju) +
n− 2

n

(
∇d∇du−∇du∇du

)
gij

+
n− 1

2nF
(∇ru∇qu)

∂(F 2grs − 2yrys)

∂yq
gklAsklgij = 0.(1.1)

To determine the solution(s) of the equation (1.1), we consider it as a system

of partial differential equations in the conformal factor eu and curvatures asso-

ciated with F on a neighborhood of the given manifold. The explicit solution

u can tell us how F is constructed. Hence, we prove the following Theorem.
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Theorem 1.2. A Finslerian metric F on a 2-dimensional manifold is locally

conformally R-Einstein if and only if one of the following two cases holds :

(i) the conformal factor is constant and F is R-Einstein.

(ii) F is a Riemannian metric.

Note that, the warped product of two R-Einstein metrics with different

horizontal scalar curvatures is not R-Einstein. It is studied in [4] the special

case where the conformal factor only depends on the base of a warped product

Riemannian manifold. Thus we have the Theorem 1.3

Theorem 1.3. Let F be a Finslerian metric on a cylinder R×


M of dimension

n ≥ 3 and


F a Finslerian metric on


M . Let u be a C∞ function on R×


M such

that u(t, x) = u(t) for every t ∈ R and x ∈


M . Then F is locally horizontally

conformal to an Einstein metric F̃ , with F̃ = euF , if and only if the conformal

factor eu and


F satisfy one of the following cases :

(i) eu(t,x) = αt + β for some real constants α, β and


F is horizontally

Ricci-flat. In particular, if α = 0 then β must be positive and hence u

is constant.

(ii) eu(t,x) = cosh−1
(√

ScalHF
(n−1)(n−2) t + γ

)
for some real constant γ and



F

is horizontally Ricci-constant with positive horizontal scalar curvature

ScalHF .

(iii) eu(t,x) = µcos−1
(√

−ScalHF
(n−1)(n−2) t+θ

)
for some real constants µ, θ and



F

is horizontally Ricci-constant with negative horizontal scalar curvature

ScalHF .

For non-warped product Finslerian metrics, we obtain the Theorem 1.4

Theorem 1.4. If the conformal factor on a 3-dimensional (respectively 4-

dimensional) Finslerian manifold is locally conformally R-Einstein then the

horizontal Cotton-York (respectively the horizontal Bach) tensor vanishes.

The rest of this paper is organised as follows. In Section 2, we give some

basic notions on Finslerian manifolds. The Section 3 is devoted to study the

Finslerian R-Einstein metrics. In the Section 4, we derive Finslerian locally

conformal R-Einstein equation. The Theorem 1.2 is proved in the Section 5.

An intrinsic theory on Finslerian warped product metrics is developped in the

Section 6 and the Theorem 1.3. Finally the Theorem 1.4 is proved in the

Section 7.

2. Preliminaries

Throughout this paper, all manifolds are assumed to be connected and, all

manifolds and mappings are supposed to be differentiable of classe C∞. How-

ever, our results presented hold under the differentiability of class C4. Let M
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be an n−dimensional manifold. We denote by TxM the tangent space at x ∈M
and by TM :=

⋃
x∈M TxM the tangent bundle of M . Set T̊M = TM\{0} and

π : TM −→M,π(x, y) 7−→ x the natural projection. Let (x1, ..., xn) be a local

coordinate on an open subset U of M and (x1, ..., xn, y1, ..., yn) be the local co-

ordinate on π−1(U) ⊂ TM . The local coordinate system (xi)i=1,...,n produces

the local coordinate bases { ∂
∂xi }i=1,...,n and {dxi}i=1,...,n respectively, for TM

and cotangent bundle T ∗M . We use Einstein summation convention : repeated

upper and lower indices will automatically be summed unless otherwise will be

noted.

Definition 2.1. A function F : TM −→ [0,∞) is called a Finslerian metric

on M if :

(1) F is C∞ on the entire slit tangent bundle T̊M ,

(2) F is positively 1-homogeneous on the fibers of TM , that is

∀c > 0, F (x, cy) = cF (x, y),

(3) the Hessian matrix (gij(x, y))1≤i,j≤n with elements

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
(2.1)

is positive definite at every point (x, y) of T̊M .

Remark 2.2. F (x, y) 6= 0 for all x ∈M and for every y ∈ TxM\{0}.

Consider the differential map π∗ of the submersion π : T̊M −→ M . The

vertical subspace of T T̊M is defined by V := ker(π∗) and is locally spanned by

the set {F ∂
∂yi , 1 ≤ i ≤ n}, on each π−1(U) ⊂ T̊M .

An horizontal subspace H of T T̊M is by definition any complementary to

V. The bundles H and V give a smooth splitting

T T̊M = H⊕ V. (2.2)

An Ehresmann connection is a selection of a horizontal subspace H of T T̊M .

As explain in [8], H can be canonically defined from the geodesics equation.

Definition 2.3. Let π : T̊M −→M be the restricted projection.

(1) An Ehresmann-Finsler connection of π is the subbundle H of T T̊M

given by

H := kerθ, (2.3)

where θ : T T̊M −→ π∗TM is the bundle morphism defined by

θ =
∂

∂xi
⊗ 1

F
(dyi +N i

jdx
j) (2.4)

with N i
j(x, y) := ∂Gi(x,y)

∂yj for

Gi(x, y) :=
1

4
gil(x, y)

[∂gjl
∂xk

(x, y) +
∂gkl
∂xj

(x, y)− ∂gjk
∂xl

(x, y)
]
yjyk. (2.5)
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(2) The form θ : T T̊M −→ π∗TM induces a linear map

θ|(x,y) : T(x,y)T̊M −→ TxM, (2.6)

for each point (x, y) ∈ T̊M ; where x = π(x, y).

The vertical lift of a section ξ of π∗TM is a unique section v(ξ) of

T T̊M such that for every (x, y) ∈ T̊M ,

π∗(v(ξ))|(x,y) = 0(x,y) and θ(v(ξ))|(x,y) = ξ(x,y). (2.7)

(3) The differential projection π∗ : T T̊M −→ π∗TM induces a linear map

π∗|(x,y) : T(x,y)T̊M −→ TxM, (2.8)

for each point (x, y) ∈ T̊M ; where x = π(x, y).

The horizontal lift of a section ξ of π∗TM is a unique section h(ξ) of

T T̊M such that for every (x, y) ∈ T̊M ,

π∗(h(ξ))|(x,y) = ξ(x,y) and θ(h(ξ))|(x,y) = 0(x,y). (2.9)

We have the following.

Definition 2.4. Let p1, p2, q1 and q2 be nonnegative integers, non both zero.

A tensor field T of type (p1, p2; q1, q2) on (M,F ) is a mapping

T : Γp1(π∗T ∗M)× Γp2(T ∗T̊M)× Γq1(π∗TM)× Γq2(T T̊M) −→ C∞(T̊M,R)

which is C∞(T̊M,R)-linear in each argument.

Remark 2.5. In a local chart,

T = T
k1...kp1 l1...lp2
i1...iq1 j1...jq2

∂k1⊗...⊗∂kp1⊗δl1⊗...⊗δlp2⊗dx
i1⊗...⊗dxiq1⊗εj1⊗...⊗εjq2

where {∂kr := ∂
∂xkr
}r=1,...,p1 , {δlm}m=1,...,p2 and {εjs}s=1,...,q2 are respectively

the basis sections for π∗TM , π∗T ∗M (dual of π∗TM) and T ∗T̊M (dual of

T T̊M).

Example 2.6. (1) A vector field X on T̊M is of type (0, 1; 0, 0).

(2) The fundamental tensor g is of type (0, 0; 2, 0).

(3) A section ξ of π∗TM is a tensor of type (1, 0; 0, 0).

The following lemma defines the Chern connection on π∗TM .

Lemma 2.7. [9] Let (M,F ) be a Finslerian manifold and g its fundamental

tensor. There exists a unique linear connection ∇ on the vector bundle π∗TM

such that, for all X,Y ∈ χ(T̊M) and for every ξ, η ∈ Γ(π∗TM), one has the

following properties :

(i) ∇Xπ∗Y −∇Y π∗X = π∗[X,Y ],

(ii) X(g(ξ, η)) = g(∇Xξ, η) + g(ξ,∇Xη) + 2A(θ(X), ξ, η)

where A := F
2
∂gij
∂yk

dxi ⊗ dxj ⊗ dxk is the Cartan tensor.
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One has

∇ δ

δxj

∂

∂xk
= Γijk

∂

∂xi
, Γijk :=

1

2
gil
(
δgjl
δxk

+
δglk
δxj
− δgjk

δxl

)
(2.10)

where {
δ

δxi
:=

∂

∂xi
−N j

i

∂

∂yj
= h(

∂

∂xi
)

}
i=1,...,n

with N i
j = Γijky

k. (2.11)

The generalized Cartan connection on π∗TM is given as follows.

Lemma 2.8. [9] Let (M,F ) be a Finslerian manifold and g its fundamental

tensor. There exists a unique linear connection c∇ on the vector bundle π∗TM

such that, for all X,Y ∈ χ(T̊M) and for every ξ, η, ν ∈ Γ(π∗TM), one has the

following properties :

(i) c∇Xπ∗Y−c∇Y π∗X = π∗[X,Y ]+(A(θ(X), π∗Y, •))]−(A(π∗X, θ(Y ), •))] ,
(ii) X(g(ξ, η)) = g(c∇Xξ, η) + g(ξ, c∇Xη) where A is the Cartan tensor

and ( )] the section of π∗TM dual to A defined by g (A(ξ, η, •)] , ν) =

A(ξ, η, ν).

3. Finslerian R-Einstein metrics

3.1. First curvature R associated with the Chern connection or the

Cartan connection.

Definition 3.1. The full curvature of a linear connection ∇ on the vector

bundle π∗TM over the manifold T̊M is the application

φ :
χ(T̊M)× χ(T̊M)× Γ(π∗TM) → Γ(π∗TM)

(X,Y, ξ) 7→ φ(X,Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ.

By the relation (2.2), we have

∇X = ∇X̂ +∇X̌ ,

where X = X̂ + X̌ with X̂ ∈ Γ(H) and X̌ ∈ Γ(V).

Using the metric F , one can define the full curvature of ∇ as :

Φ(ξ, η,X, Y ) = g(φ(X,Y )ξ, η)

= g(φ(X̂, Ŷ )ξ + φ(X̂, Y̌ )ξ + φ(X̌, Ŷ )ξ + φ(X̌, Y̌ )ξ, η)

= R(ξ, η,X, Y ) + P(ξ, η,X, Y ) + Q(ξ, η,X, Y ),

where

R(ξ, η,X, Y ) = g(φ(X̂, Ŷ )ξ, η), P(ξ, η,X, Y ) = g(φ(X̂, Y̌ )ξ, η)+g(φ(X̌, Ŷ )ξ, η)

and

Q(ξ, η,X, Y ) = g(φ(X̌, Y̌ )ξ, η)

are respectively the first (horizontal) curvature, mixed curvature and vertical

curvature.

In particular, if ∇ is the Chern connection, the Q-curvature vanishes.
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Proposition 3.2. Let cΦ be the full curvature tensor associated with the Car-

tan connection. Then in the horizontal direction, cΦ = Φ.

Proof. If X,Y ∈ H then X = X̂ = X̂k δ
δxk

and Y = Ŷ = Ŷ r δ
δxr . By the

relation (2.4), we get

θ(X̂) =

[
∂

∂xi
⊗ 1

F
(dyi +N i

jdx
j)

]
(X̂k δ

δxk
)

= −X̂
k

F
Ns
kδ
i
s

∂

∂xi
+
X̂k

F
N i
jδ
j
k

∂

∂xi

= 0. (3.1)

Using the relation (3.1) together with the Lemma 2.7 and the Lemma 2.8, we

get c∇ = ∇ for horizontal vectors fields on T̊M . Thus, the curvatures of c∇
and ∇ are equal. �

3.2. Horizantal Ricci tensor and horizantal scalar curvatures. With

respect to the Chern connection or the Cartan connection, we have the follow-

ing.

Definition 3.3. The horizontal Ricci tensor RicHF and the horizontal scalar

curvature ScalHF of (M,F ) are respectively defined by

RicHF (ξ,X) := gijR(ξ, ∂i, X, ∂̂j), (3.2)

ScalHF := traceg

(
RicHF

)
, g := π∗g. (3.3)

Remark 3.4. Let l := yi

F
∂
∂xi be the distinguish section for π∗TM . The tensor

RicHF can be expressed in term of the classical Akbar-Zadeh Ricci curvatures

[13] Ric and Ricij as follows.

RicHF (l,h(l))
(3.2)
= gijR(l, ∂i,h(l), ∂̂j)

= gij llR(∂l, ∂i, , ∂̂k, ∂̂j)l
k

= Ric
= liljRicij .

3.3. Finslerian R-Einstein metric. It is known [3], F is Einstein if there

exists a C∞ function k on M such that

Ric = (n− 1)k. (3.4)

Now, we introduce the following.

Definition 3.5. A Finslerian metric F on an n-dimensional manifold is R-

Einstein if

RicHF =
1

n
ScalHF g. (3.5)
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Remark 3.6. If F satisfies (3.5) for a constant function ScalHF (respectively

for ScalHF ≡ 0) then F is said to be horizontally Ricci-constant (respectively,

F is called horizontally Ricci-flat metric).

Remark 3.7. If F is a Finslerian R-Einstein metric on an n-dimensional

manifold M then its associated horizontal scalar curvature is a function on M .

That is, for any (x, y) of T̊M , ScalHF (x, y) = n(n− 1)k(x).

Definition 3.8. Let T be a (p1, p2; 0, 0)-tensor on (M,F ) and X ∈ T T̊M .

The covariant derivative of T in the direction of X is given by the following

formula :

(∇XT) (ξ1, ..., ξp1 , X1, ..., Xp2) := X (T (ξ1, ..., ξp1 , X1, ..., Xp2))

−
p1∑
i=1

[T (ξ1, ...,∇Xξi, ..., ξp1 , X1, ..., Xp2)]

−
p2∑
j=1

[T(ξ1, ..., ξp1 , X1, ...,h(∇Xπ∗Xj), ..., Xp2)]

−
p2∑
j=1

[T(ξ1, ..., ξp1 , X1, ...,h(∇Xθ(Xj)), ..., Xp2)]

−
p2∑
j=1

[T(ξ1, ..., ξp1 , X1, ..., v(∇Xπ∗Xj), ..., Xp2)]

−
p2∑
j=1

[T(ξ1, ..., ξp1 , X1, ..., v(∇Xθ(Xj)), ..., Xp2)] .

We obtain the Finslerian horizantal Bianchi identity given in the following.

Lemma 3.9. If ξ, η ∈ Γ(π∗TM) and X,Y, Z ∈ χ(T̊M) then

(∇ZR) (ξ, η,X, Y ) + (∇XR) (ξ, η, Y, Z) + (∇YR) (ξ, η, Z,X) = 0. (3.6)

Proof. The Lemma 3.9 is obtained from the symmetry of ∇ and the Jacobi

identity and by the Definition 3.8 applied to the first curvature R. �

3.4. Schur’s type lemma. We prove a Schur lemma for ScalHF .

Lemma 3.10. If F is horizontally an Einstein metric on a connected manifold

of dimension n ≥ 3 then its horizontal scalar curvature is constant.

Proof. If F is horizontally an Einstein metric then the relation (3.5) holds.

Applying the horizontal covariant derivative on each side of the relation

(3.5), we obtain

∇kRicHF (∂i, ∂̂j) =
1

n

(
∇kScalHF

)
gij
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where ∇i = ∇∂̂i . Multiplying this last equation by gik and setting gik∇i = ∇k
we get

∇iRicHF (∂i, ∂̂j) =
1

n
∇jScalHF . (3.7)

By contracting twice on equation (3.6) written in a local coordinate, we have

1

2
∇jScalHF = ∇iRicHF (∂i, ∂̂j)

(3.7)
=

1

n
∇jScalHF . (3.8)

When n > 2, the equations (3.7) and (3.8) together with the Lemma 3.7

imply

0 = ∇jScalHF

=
∂ScalHF
∂xj

.

Hence, ScalHF must be constant. �

4. Finslerian locally conformal R-Einstein equation

4.1. Conformal change of Finslerian trace-free horizontal Ricci ten-

sors.

Definition 4.1. A Finslerian metric F on a manifold M is locally conformally

R-Einstein if each point x ∈ M has a neighborhood U on which there exists a

C∞-function u such that the conformal deformation F̃ of F , with F̃ = euF , is

an R-Einstein metric on U .

Lemma 4.2. [10] Let F and F̃ be two Finslerian metrics on an n-dimensional

manifold M . If F is conformal to F̃ , with F̃ = euF , then the trace-free hori-

zontal Ricci tensors EHF and Ẽ
H

F̃ are related by

Ẽ
H

F̃ = EHF − (n− 2) (Hu − du ◦ du)− (n− 2)

n

(
∆Hu+ ||Ou||2g

)
g + Ψ

EHF
u
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where Ψ
EHF
u is the (1, 1; 0, 0)-tensor on (M,F ) given by

Ψ
EHF
u (ξ,X) := (2− n) [A(Ou,B(X), ξ) +A(Ou, π∗X,B(h(ξ)))]

+(n− 4)A(B(h(Ou), π∗X, ξ))

+
1

n
gij
[
2(n− 2)A(Ou, ∂i,B(∂̂j)))

−3A(B(h(Ou), ∂j , ∂i))] g(ξ, π∗X).

+gij
[
g
(

Θ(X,h(Θ(∂̂j ,h(ξ)))), ∂i

)
− g

(
Θ(∂̂j ,h(Θ(X,h(ξ))), ∂i

) ]
+gij

[
g
(

(∇XΘ)(∂̂j ,h(ξ)), ∂i

)
− g ((∇jΘ)(h(ξ), X), ∂i)

]
− 1

n
gijgkl [A(B(h(Θjk), ∂l, ∂i))−A(B(h(Θkl), ∂j , ∂i))] g(ξ, π∗X)

− 1

n
gijgkl [g ((∇lΘ)jk, ∂i)− g ((∇jΘ)kl, ∂i)] g(ξ, π∗X), (4.1)

for every ξ ∈ Γ(π∗TM) and X ∈ χ(T̊M) with Θij = Θ(∂̂i, ∂̂j) and B is the

application which maps π∗TM to π∗TM defined by

B = Bij∂i ⊗ dxj (4.2)

with

Bij =
1

2F
(∇ru)

∂(F 2gir − 2yiyr)

∂yj
. (4.3)

4.2. Proof of the Proposition 1.1.

Proof. Let F and F̃ be two conformal Finslerian metrics on a manifold of

dimension n. If F is conformally R-Einstein then Ẽ
H

F̃ vanishes. By the Lemma

4.2, in a local chart we have

0 =
[
EH
F − (n− 2) (Hu − du ◦ du)− (n− 2)

n

(
∆Hu+ ||Ou||2g

)
g
]
(∂i, ∂̂j)

+Ψ
EHF
u (∂i, ∂̂j) (4.4)

where

Ψ
EHF
u (∂i, ∂̂j) = (2− n)

[
A(Ou,B(∂̂j), ∂i) +A(Ou, π∗∂̂j ,B(h(∂i)))

]
+(n− 4)A(B(h(Ou), π∗∂̂j , ∂i))

+
1

n
gkl
[
2(n− 2)A(Ou, ∂k,B(∂̂l)))− 3A(B(h(Ou), ∂l, ∂k))

]
g(∂i, π∗∂̂j).

+gij
[
g
(

Θ(∂̂j ,h(Θ(∂̂l,h(∂i)))), ∂k

)
− g

(
Θ(∂̂j ,h(Θ(∂̂l,h(∂i))), ∂k

) ]
+gkl

[
g
(

(∇jΘ)(∂̂l,h(∂i)), ∂k

)
− g

(
(∇lΘ)(h(∂i), ∂̂j), ∂k

) ]
− 1

n
grsgkl

[
A(B(h(Θsk), ∂l, ∂r))−A(B(h(Θkl), ∂s, ∂r))

]
gij

− 1

n
grsgkl [g ((∇lΘ)sk, ∂r)− g ((∇sΘ)kl, ∂r)] gij . (4.5)
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Using the relation (4.2), we have B(∂̂l) = Bs1s2δ
s2
l ∂s1 = Bs1l ∂s1 and

B(h(Ou)) = Bs1s2∂s1 ⊗ dx
s2(h(∇lu∂l)) = ∇luBs1l ∂s1 . Thus, from (4.5), we have

I1 = (2− n)
[
A(Ou,B(∂̂j), ∂i) +A(Ou, π∗∂̂j ,B(h(∂i)))

]
+(n− 4)A(B(h(Ou), π∗∂̂j , ∂i))

= (n− 4)∇s2uBs1s2As1ij − (n− 2)
(
∇s2uBs1i As1js2 +∇s2uBs1j As1is2

)
,

I2 =
1

n
gkl
[
2(n− 2)A(Ou, ∂k,B(∂̂l)))− 3A(B(h(Ou), ∂l, ∂k))

]
gij

= − 1

n
gkl∇s2u

[
− 3Bs2s1As1kl + 3Bks1As1ls2 − (2n− 1)Bks1As1ls2

]
gij ,

I3 = − 1

n
grsgkl [A(B(h(Θsk), ∂l, ∂r))−A(B(h(Θkl), ∂s, ∂r))] gij ,

I4 = gkl
[
g
(

Θ(∂̂j ,h(Θ(∂̂l,h(∂i)))), ∂k

)
− g

(
Θ(∂̂l,h(Θ(∂̂j ,h(∂i))), ∂k

)]
= gklδri δ

s
j

[
g
(

Θ(∂̂s,h(Θ(∂̂l,h(∂r)))), ∂k

)
− g

(
Θ(∂̂l,h(Θ(∂̂s,h(∂r))), ∂k

)]
=

1

n
gklgrsgij

[
g
(

Θ(∂̂s,h(Θ(∂̂l,h(∂r)))), ∂k

)
− g

(
Θ(∂̂l,h(Θ(∂̂s,h(∂r))), ∂k

)]
= −I3,

I5 = − 1

n
grsgkl [g ((∇lΘ)sk, ∂r)− g ((∇sΘ)kl, ∂r)] gij ,

I16 = gij
[
g
(

(∇XΘ)(∂̂j ,h(ξ)), ∂i

)
− g ((∇jΘ)(h(ξ), X), ∂i)

]
= −I5.

Hence, putting the expressions of I1, I2, I3, I4, I5 and I6 in the right-hand side

of (4.4) we obtain the equation 1.1. �

Remark 4.3. The equation (1.1) is called Finslerian locally conformal R-

Einstein equation.

5. Locally conformally R-Einstein metrics in dimensions 1 and 2

5.1. For n = 1. Every Finslerian metric is conformally R-Einstein.

Theorem 5.1. Let (M,F ) be a Finslerian manifold of dimension one. Then

(M,F ) is always R-flat.

Proof. This follows from the Lemma 2.7 and the skewsymmetry the curvature

R. �

5.2. For n = 2: Proof of the Theorem 1.2.

Proof. When n = 2, the equation (1.1) reduces to

EF (∂i, ∂̂j) +
1

4F
(∇ru∇qu)

∂(F 2grs − 2yrys)

∂yq
gklAsklgij = 0. (5.1)
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Contracting (5.1) by gij yields

1

2F
(∇ru∇qu)

∂(F 2grs − 2yrys)

∂yq
gklAskl = 0. (5.2)

Using the famous Euler theorem on homogeneous functions (see [2], page 5),

applied on functions ysAskl = ys ∂gkl∂ys = 0, we have

∂(−2yrys)

∂yq
gklAskl = −2ysAsklgklδrq = 0.

Since F is a Finslerian metric, F (x, y) 6= 0 for every (x, y) ∈ T̊M and since g

is positive-definite the gkl functions do not vanish for any k, l ∈ {1, 2}. Hence,

the only solution of the equation (5.2) are ∇ru = 0 or A ≡ 0.

(i) If ∇ru = 0, the conformal factor u is constant. Further, if u is constant

then by equation (5.1) EH
F vanishes.

(ii) If A ≡ 0, by Deicke’s theorem, F is Riemannian. Hence, the result

follows by the fact that any Riemannian metric on a 2-dimensional

manifold is Einstein (see [3]).

Conversely, if the conformal deformation is homothetic and F is horizontally

locally Einstein then the relation (5.1) is satisfied. Thus, if A vanishes it is

known that F is Riemannian and, when n = 2, every Riemannian metric in

conformally Einstein. �

Example 5.2. For a Finsler-Minkowskian metric on R2, F (x, y) = F (y). The

conformal deformations of F are of the form F̃ = cF for all c > 0. Since, the

R-curvature on R2 vanishes, the tensor EHF vanishes. Then F is globally (and

automatically locally) conformally R-Einstein.

6. Locally conformally R-Einstein metrics on a cylinder of dimension

n ≥ 3

6.1. Warped product of Finslerian metrics. Let


M and


M be two man-

ifolds. The set of all product coordinate systems in


M ×


M is an atlas on

M =


M ×


M called product manifold of


M and


M .

Example 6.1. The product R×


M is called an infinite cylinder over


M .

Example 6.2. In the Example 6.1, if we replace R by an open interval (1, ε),

we obtain a finite cylinder (1, ε)×


M over


M .

Remark 6.3. In general, the product manifold of k manifolds


M ,...,
k−
M and

k

M is the cartesian product M =


M ×...×
k

M .

Let


M and


M be two C∞ manifolds. For every (x1, x2) ∈


M ×


M , we have

the following properties derived from


M and


M .
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(1) The projections

p :



M ×


M−→


M such that

p (x1, x2) = x1


p :



M ×


M−→


M such that

p (x1, x2) = x2

are C∞ submersions.

(2) dim(


M ×


M) = dim


M +dim


M .

The warped product manifold of two Finslerian manifolds is defined as fol-

lows.

Definition 6.4. Let (


M,


F ) and (


M,


F ) be two Finslerian manifolds. Let f be

a positive C∞ function on


M . The warped product of (


M,


F ) and (


M,


F ) is a

manifold M =


M ×f


M equipped with the Finslerian metric

F : T̊


M ×T̊


M−→ R+ (6.1)

such that for any vector tangent y ∈ TxM , with x = (x1, x2) ∈ M and y =

(y1, y2),

F (x, y) =

√


F 2 (x1,

p∗ y) + f2(


p (x1, x2))



F 2 (x2,

p∗ y) (6.2)

where

p and


p are respectively the projections of



M ×


M onto


M and


M .

Remark 6.5. Let F be a Finsler metric on a warped product manifold


M

×f


M .

(1) F is not C∞ on the tangent vectors of the form (y1, 0) nor (0, y2) at a

point (x1, x2) ∈


M ×f


M .

(2)


M is called the base manifold while


M is the fiber manifold and f is

called the warping function.

If f ≡ 1 then (


M ×f


M,

√


F 2 (x1,

p∗ y) + f2(


p (x1, x2))



F 2 (x2,

p∗ y)

reduces to a Finslerian product manifold (


M ×


M,

√


F 2 (x1,

p∗ y)+



F 2 (x2,

p∗ y).

The function F defined in (6.1) and (6.2) is a Finslerian manifold. More

precisely,

(i) F is C∞ on T̊


M ×T̊


M since


F and


F are respectively C∞ on T̊


M

and T̊


M .

(ii) F is homogeneous of degree 1 in y = (y1, y2) ∈ TxM . Namely, for any

c > 0,

F (x, cy)
(6.2)
=

√


F 2 (x1, (cy1)) + f2(x1)


F 2 (x2, (cy2))

= c

√


F 2 (x1, y1) + f2(x1)


F 2 (x2, y2)

= cF (x, y).
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(iii) If n1 and n2 are respectively the dimensions of (


M,


F ) and (


M,


F ),

each element of the Hessian matrix (gij(x, y))1≤i,j≤n1+n2 of 1
2F

2, has

the form :

gij(x, y) :=
∂2
[

1
2F

2(x, y)
]

∂yi∂yj

=
1

2

∂2

[


F 2 (x1, y1) + f2(x1)


F 2 (x2, y2)

]
∂yi∂yj

=
1

2

∂2


F 2 (x1, y1)

∂yi1∂y
j
1

+
1

2
f2(x1)

∂2


F 2 (x2, y2)

∂yi2∂y
j
2

.

for every point (x, y) = (x1, x2, y1, y2) ∈ T̊


M ×T̊


M . Thus,

(
gij(x, y)

)
=

( ( 
gij (x1, y1)

)
0

0
( 
gij (x2, y2)

) ) (6.3)

where

gij (x1, y1) := 1

2
∂2



F 2(x1,y1)

∂yi1∂y
j
1

and

gij (x2, y2) := 1

2f
2(x1)∂

2


F 2(x2,y2)

∂yi2∂y
j
2

.

So the fundamental tensor g of F is positive definite at every point

(x1, x2, y1, y2) ∈ T̊


M ×T̊


M since

g and


g are.

6.2. Curvatures associated with warped product Finslerian metrics.

Given the submersions

π: T̊



M−→


M and

π: T̊



M−→


M , the fundamental ten-

sors

g and


g associated with



F and


F are Riemannian metrics on the respective

pulled-back tangent bundles


π∗ T


M and


π∗ T


M . Thus,

π gives rise to the

Ehresmann-Finsler connection



H= kerθ1 where θ1 : T T̊


M−→


π∗ T


M (6.4)

while

π give rise to the Ehresmann-Finsler



H= kerθ2 where θ2 : T T̊


M−→


π∗ T


M . (6.5)

The Ehresmann-Finslerian product connection H is given by the product

form θ of θ1 and θ2, that is

θ = θ1 × θ2 : T T̊


M ×T T̊


M≡ T (T̊


M ×T̊


M) −→


π∗ T


M ×


π∗ T


M (6.6)

such that

kerθ = ker(θ1 × θ2) = kerθ1 ⊕ kerθ2. (6.7)

Now, let


V and


V be the vertical subbundle of T T̊


M and T T̊


M , respec-

tively. We obtain the following decomposition

T T̊ (


M ×


M) =


H ⊕


V ⊕


H ⊕


V . (6.8)
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Proposition 6.6. Let (


M,


F ) and (


M,


F ) be two Finslerian manifolds. On a

warped product manifold M =


M ×f


M , if


ξ∈ Γ(


π∗ T


M),


ξ∈ Γ(


π∗ T


M) and


X∈ χ(T̊


M) then

(i) ∇ 
X



ξ=


∇ 
X



ξ where


∇ is the Chern connection associated with (


M,


F ).

(ii) ∇ 
X



ξ= 1
f



X (f)


ξ.

Proof. (i) From the relation of g-almost compatibility of ∇, we obtain

2g(∇ 
X



ξ,


ξ) =


X [g(


ξ,


ξ)]+


h(ξ) [g(

π∗



X,


ξ)]−


h(ξ) [g(


ξ,

π∗



X)]

−g(

π∗



X, [


ξ,


ξ])− g(


ξ, [

π∗



X,


ξ]) + g(


ξ, [

π∗



X,


ξ])

+A(θ(


X),


ξ,


ξ) +A(θ(


h(ξ)),

π∗



X,


ξ)−A(θ(


h(ξ)),

π∗



X,


ξ)

= 0.

(ii) For


ξ,

η∈ Γ(



π∗ T


M),

2g(∇ 
X



ξ,

η) =



X [g(


ξ,

η)]

(6.3)
=



X [(f◦

p)2 

g (


ξ,

η)]

and the relation in (ii) follows. �

As a direct consequence, we have

Corollary 6.7. Let (


M,


F ) and (


M,


F ) be two Finslerian manifolds. On a

warped product manifold M =


M ×f


M , if


ξ,

η∈ Γ(



π∗ T


M),


X,


Y ∈ χ(T̊


M)

and


X∈ χ(T̊


M) then

(i) R(


ξ,

η,



X,


Y ) =


R (


ξ,

η,



X,


Y ).

(ii) R(


ξ,

η,



X,


Y ) = 0.

Proof. The proof follows from the Proposition 6.6. �

6.3. Proof of the Theorem 1.3. We consider the special case where the

conformal factor only depends on the base manifold


M of the product


M ×


M .

Proof. A Finslerian metric F on a cylinder R×


M can be written as F =√
t2+



F
2

where


F is a Finslerian metric on


M . Further, if F is locally confor-

mal to the R-Einstein metric eu(t)F , then by Proposition 1.1, we have
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Case 1 : if i = j = 1, that is t = yi = yj , the equation (1.1) becomes

0 = EF (∂t, ∂̂t)− (n− 2) (∇t∇tu−∇tu∇tu)

+
(n− 2)

n

(
∇d∇du−∇du∇du

)
gtt

+
(n− 1)

2nF
(∇ru∇qu)

∂(F 2grs − 2yrys)

∂yq
gklAsklgtt

= RicF (∂t, ∂̂t)−
1

n
ScalHF gtt

−(n− 2) (∇t∇tu−∇tu∇tu)

+
(n− 2)

n
gtd (∇t∇du−∇tu∇du) gtt

+
(n− 1)

2nF

(
∇tu∇tu

) ∂(F 2gtt − 2t2)

∂t
gklAtkl

since u = u(t) and yq = t is a coordinate on R. It follows that

0 = − 1

n
ScalHF

−(n− 2)
(
u

′′
− u

′2
)

+
(n− 2)

n

(
u

′′
− u

′2
)

+
(n− 1)

2nF

(
u

′2
) ∂(F 2 − 2t2)

∂t
gkl × 0

= ScalH
F

+ (n− 1)(n− 2)(u
′′
− u

′2). (6.9)

Case 2 : if i = 1 and j ∈ {2, 3, ..., n} or j = 1 and i ∈ {2, 3, ..., n} that is t 6= yi

or t 6= yj , by the Proposition 6.7 and by the fact that u = u(t), each

term in the left-hand side of the equation (1.1) vanishes.

Case 3 : if i, j ∈ {2, 3, ..., n} that is t 6= yi and t 6= yj , the equation (1.1) becomes

0 = EF (∂α, ∂̂β)− (n− 2) (∇β∇αu−∇αu∇βu)

+
(n− 2)

n

(
∇d∇du−∇du∇du

)
gαβ

+
(n− 1)

2nF
(∇ru∇qu)

∂(F 2grs − 2yrys)

∂yq
gklAsklgαβ

= Ric 
F

(∂α, ∂̂β)− 1

n
ScalH

F


gαβ . (6.10)

Therefore F̃ = euF = eu
√
t2+



F
2

is locally an Einstein metric if and only

if

0 =

 ScalH
F

+ (n− 1)(n− 2)(u
′′ − u′2)

Ric 
F

(∂α, ∂̂β)− 1
nScalH

F


gαβ

=

{
ScalH

F
+ (n− 1)(n− 2)(u

′′ − u′2)

E 
F

(∂α, ∂̂β) for α, β ∈ {2, ..., n}.
(6.11)
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From the system (6.11),


F is R-Einstein. By the Lemma 3.10, ScalH
F

=

constant. Denote this constant by s. The system (6.11) becomes u
′′ − u′2 +

s
(n−1)(n−2) = 0 or equivalently

u
′′
− u

′2 + s∗ = 0 (6.12)

where s∗ := s
(n−1)(n−2) . We set eu = ϕ−1 = 1

ϕ . Then

u
′

= −ϕ
′

ϕ
, u

′2 =
ϕ

′2

ϕ2
and u

′′
=
−ϕ′′

ϕ+ ϕ
′2

ϕ2
.

The equation (6.12) becomes

ϕ
′′
− ϕs∗ = 0. (6.13)

We distinguish three cases :

(i) s∗ = 0. The general solution ϕ of the equation (6.13) is

ϕ(t) = c1t+ c2.

Thus, the conformal factor satisfies eu(t) = ϕ−1(t) = αt + β. In par-

ticular, if α = 0 then β must be positive since eu is the conformal

factor.

(ii) s∗ > 0. The general solution ϕ of the equation (6.13) is

ϕ(t) = cosh
(√

s∗t+ γ
)
.

(iii) s∗ < 0. The general solution ϕ of the equation (6.13) is ϕ(t) =

c5cos
(√
−s∗t

)
+ c6sin

(√
−s∗t

)
. Setting c5 = µcosθ and c6 = −µsinθ

the last relation can be expressed as ϕ(t) = µ
[
cos
(√
−s∗t+ θ

)]
.

Conversely, if one of the cases (i), (ii) and (iii) is holds then euF is R-

Einstein. �

Example 6.8. Let


F be a Finslerian metric on the sphere Sn−1 with positive

constant flag curvature k = 1. We can show


F is of horizantal scalar curvature

ScalH
F

= (n − 1)(n − 2). Then the Finslerian metric F =

√
t2+



F
2

is locally

conformal to the R-Einstein metric F̃ = cosh−1tF for t ∈ (1,∞).

7. Non-product metrics locally conformally R-Einstein

We give the following.

Definition 7.1. Let (M,F ) be a Finslerian manifold of dimension n ≥ 3.

(1) The horizontal Schouten tensor of (M,F ) is the (0, 0; 1, 1)-tensor given

by

SHF =
1

n− 2

(
RicHF −

1

2(n− 1)
ScalHF g

)
. (7.1)
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(2) The horizontal Weyl tensor of (M,F ) is the (0, 0; 2, 2)-tensor defined

by

WH
F = R− g � SHF . (7.2)

Its components in a local coordinate are defined as follows,

WF (∂l, ∂i, ∂̂j , ∂̂k) = R(∂l, ∂i, ∂̂j , ∂̂k)

−gljSF (∂i, ∂̂k)− gikSF (∂l, ∂̂j)

+glkSF (∂i, ∂̂j) + gijSF (∂l, ∂̂k). (7.3)

(3) The horizontal tensor of type Cotton-York of (M,F ) is the (0, 0; 1, 2)-

tensor CH
F defined by

CH
F (ξ,X, Y ) =

(
∇XSHF

)
(ξ, Y )−

(
∇Y SHF

)
(ξ,X) (7.4)

for every ξ ∈ Γ(π∗TM) and X,Y ∈ χ(T̊M). In a local chart,

CF (∂i, ∂̂j , ∂̂k) = (∇jSF ) (∂i, ∂̂k)− (∇kSF ) (∂i, ∂̂j). (7.5)

In dimension greater than 3, we introduce in Finselrian Geometry the fol-

lowing tensor.

Definition 7.2. The horizontal tensor of type Bach of a Finslerian manifold

(M,F ) is the (1, 1; 0)-tensor BH
F defined by

BF (∂i, ∂̂j) = ∇kCF (∂i, ∂̂j , ∂̂k) + SlkFWF (∂l, ∂i, ∂̂k, ∂̂j). (7.6)

We have the following properties.

Lemma 7.3. Let (M,F ) be a Finslerian manifold of dimension n ≥ 3. Then,

(1) the horizontal tensors of Weyl and of Cotton-York tensors are related

as follows :

∇lWF (∂l, ∂i, ∂̂j , ∂̂k) = (n− 3)CF (∂i, ∂̂j , ∂̂k)

(2) if F is horizontally an Einstein metric then its horizontal Cotton-York

tensor vanishes

CF (∂i, ∂̂j , ∂̂k) = 0..

Proof. (1) Contracting the Finslerin second Bianchi identity given in Lemma

3.9 we get gsl
[
∇jRliks +∇kRlisj +∇sRlijk

]
= 0. Equivalent

−∇jRicF (∂i, ∂̂k) +∇kRicF (∂i, ∂̂j) +∇lRlijk = 0.
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Using this relation we have

∇lWF (∂l, ∂i, ∂̂j , ∂̂k) = gls∇sWF (∂l, ∂i, ∂̂j , ∂̂k)

(7.3)
= gls∇s

{
R(∂l, ∂i, ∂̂j , ∂̂k)

− 1

n− 2

[
RicF (∂l, ∂̂j)gik −RicF (∂i, ∂̂j)glk

+RicF (∂i, ∂̂k)glj −RicF (∂l, ∂̂k)gij

]
+

ScalHF
(n− 1)(n− 2)

[gijglk − gikglj ]
}

=
n− 3

n− 2

(
∇jRicF (∂i, ∂̂k)−∇kRicF (∂i, ∂̂j)

)
− n− 3

2(n− 1)(n− 2)

(
∇jScalHF gik −∇kScalHF gij

)
(7.5)
= (n− 3)CF (∂i, ∂̂j , ∂̂k).

(2) If F is R-Einstein then, by Lemma 3.10, ScalHF is constant. Hence,

CF (∂i, ∂̂j , ∂̂k) = (∇jSF ) (∂i, ∂̂k)− (∇kSF ) (∂i, ∂̂j)

= ∇j
[ 1

n− 2

(
RicHF −

1

2(n− 1)
ScalHF g

)]
(∂i, ∂̂k)

−∇k
[ 1

n− 2

(
RicHF −

1

2(n− 1)
ScalHF g

)]
(∂i, ∂̂j).

Hence, formula (3.5) implies relation (7.7).

�

Lemma 7.4. Let F be a Finslerian metric on a manifold of dimension n ≥ 3.

If F̃ is a conformal deformation of F , with F̃ = euF , then

(1) the horizontal Schouten tensor behaves as follows :

S̃
H

F̃ (∂i, ∂̂j) = SHF (∂i, ∂̂j)−∇j∇iu+∇iu∇ju+ hgij (7.7)

where

h : = −1

2
∇ku∇ku+

∇sugkl

n(n− 1)

[
(n+ 8)Bs1l Asks1 − 2Bs1s Alks1

]
+

1

2n(n− 1)
gklgrs

{[
g(Θ(∂̂s,h(Θlr)), ∂k)− g(Θ(∂̂l,h(Θrs)), ∂k)

]
+
[
g((∇sΘ)lr, ∂k)− g((∇lΘ)rs, ∂k)

]}
.
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(2) if a horizontal (1, 1, 0)-tensor TH
F satisfies TF (∂i, ∂̂j) = TF (π∗∂̂j ,h(∂i)),

for any i, j = 1, ..., n, then(
∇̃jTF

)
(∂i, ∂̂k) =

(
∇jTF

)
(∂i, ∂̂k)

−2∇juTik −∇iuTjk −∇kuTij

+gijTF (Ou, ∂k) + gjkTF (∂i,h(Ou))

−TF (∂i,h(Θ)jk)−TF (Θij , ∂̂k). (7.8)

(3) the horizontal Cotton-York tensor behaves as follows :

C̃F̃ (∂i, ∂̂j , ∂̂k) = CF (∂i, ∂̂j , ∂̂k) + WF (Ou, ∂i, ∂̂j , ∂̂k) + Ψ
CHF
u (∂i, ∂̂j , ∂̂k)

where

Ψ
CHF
u (∂i, ∂̂j , ∂̂k) = ∇j

(
∇iu∇ku+ hgik

)
−∇k

(
∇iu∇ju+ hgij

)
+Γlik∇lu∇ju− Γlij∇lu∇ku

+gjl∇lu
(
∇k∇iu− hgik

)
− gkl∇lu

(
∇j∇iu− hgij

)
+gij∇k∇h(Ou)u+ gik∇j∇h(Ou)u

−∇j∇Θiku+∇Θiku∇ju+∇k∇Θiju−∇Θiju∇ku.

Proof. The assertion (1) in Lemma 7.4 is obtained by using the relation (7.1)

and the lemmas 5 and 6 in [11].

To obtain the relation (7.8) in Lemma 7.4, we consider a (1, 1, 0)-tensor TH
F

on (M,F ). Then for every vector fields X,Y on T̊M and for any section ξ of

the vector bundle π∗TM , we obtain(
∇̃XTH

F

)
(ξ, Y ) = ∇̃X(TH

F (ξ, Y ))−TH
F (∇̃Xξ, Y )−TH

F (ξ,h(∇̃Xπ∗Y )) (7.9)

where ∇̃X is the covariant derivative with respect to F̃ in a given direction X.

We have(
∇̃XTH

F

)
(ξ, Y ) = ∇X(TH

F (ξ, Y ))−TH
F

(
∇Xξ + du(π∗X)ξ + du(ξ)π∗X

−g(π∗X, ξ)Ou+ Θ(X,h(ξ)), Y
)

−TH
F (ξ,h(∇Xπ∗Y + du(π∗X)π∗Y

+du(π∗Y )π∗X − g(π∗X,π∗Y )Ou+ Θ(X,Y )))

= ∇X(TF (ξ, Ŷ ))− 2(∇Xu)TF (ξ, Ŷ )

−(∇h(ξ)u)TF (π∗X, Ŷ )− (∇Y u)TF (ξ, X̂)

+g(ξ, π∗X)TF (Ou, Ŷ ) + g(π∗X,π∗Y )TF (ξ, Ôu)

−TF (ξ,h(Θ(X,Y ))−TF (Θ(h(ξ), X), Y ).

Setting ξ = ∂i, X = ∂̂j and Y = ∂̂k, we obtain the relation.

From the these two properties, we obtain the assertion (3) in the Lemma

7.4. �
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7.1. Proof of the Theorem 1.4 in dimension n = 3. Let F and F̃ be two

conformal Finslerian metric, with F̃ = euF , on a manifold of dimension n ≥ 3.

Then

C̃F̃ (∂i, ∂̂j , ∂̂k)
(7.5)
=

(
∇̃jS̃F̃

)
(∂i, ∂̂k)−

(
∇̃kS̃F̃

)
(∂i, ∂̂j)

(7.8)
=

(
∇jS̃F̃

)
(∂i, ∂̂k)−

(
∇kS̃F̃

)
(∂i, ∂̂j)

−∇juS̃F̃ (∂i, ∂̂k) +∇kuS̃F̃ (∂i, ∂̂j)

+gijS̃F̃ (Ou, ∂k)− gikS̃F̃ (Ou, ∂j)

+S̃F̃ (Θik, ∂̂j)− S̃F̃ (Θij , ∂̂k).

= ∇j
[
S̃F̃ (∂i, ∂̂k)

]
− S̃F̃

(
∇j∂i, ∂̂k

)
−S̃F̃

(
∂i,h(∇jπ∗∂̂k)

)
−
{
∇k
[
S̃F̃ (∂i, ∂̂j)

]
−S̃F̃

(
∇k∂i, ∂̂j

)
− S̃F̃

(
∂i,h(∇kπ∗∂̂j)

)}
−∇juS̃F̃ (∂i, ∂̂k) +∇kuS̃F̃ (∂i, ∂̂j)

+gijS̃F̃ (Ou, ∂k)− gikS̃F̃ (Ou, ∂j)

+S̃F̃ (Θik, ∂̂j)− S̃F̃ (Θij , ∂̂k)

= CF̃ (∂i, ∂̂j , ∂̂k)

+∇j
[
−∇kgil∇lu+∇iu∇ku+ hgik

]
−∇k

[
−∇jgil∇lu+∇iu∇ju+ hgij

]
+
[
−∇j∇∇k∂iu+∇∇k∂iu∇ju+ hg(∇k∂i, π∗∂̂j)

]
−
[
−∇k∇∇j∂iu+∇∇j∂iu∇ku+ hg(∇j∂i, π∗∂̂k)

]
−gjl∇lu

[
SHF (∂i, ∂̂k)−∇k∇iu+∇iu∇ku+ hgik

]
+gkl∇lu

[
SHF (∂i, ∂̂j)−∇j∇lu∂l +∇iu∇ku+ hgij

]
+gij

[
∇luSHF (∂l, ∂̂k)−∇k∇h(Ou)u

]
−gik

[
∇luSHF (∂l, ∂̂j)−∇j∇h(Ou)u

]
+
[
SHF (Θik, ∂̂j)−∇j∇Θiku+∇Θiku∇ju

]
−
[
SHF (Θij , ∂̂k)−∇k∇Θiju+∇Θiju∇ku

]
.

Therefore

C̃F̃ (∂i, ∂̂j , ∂̂k) = CF̃ (∂i, ∂̂j , ∂̂k) +∇luWF (∂l, ∂i, ∂̂j , ∂̂k) + Ψ
CHF
u (∂i, ∂̂j , ∂̂k),
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where

Ψ
CHF
u (∂i, ∂̂j , ∂̂k) = ∇j

(
∇iu∇ku+ hgik

)
−∇k

(
∇iu∇ju+ hgij

)
+Γlik∇lu∇ju− Γlij∇lu∇ku+ gjl∇lu

(
∇k∇iu− hgik

)
−gkl∇lu

(
∇j∇iu− hgij

)
+ gij∇k∇h(Ou)u+ gik∇j∇h(Ou)u

−∇j∇Θiku+∇Θiku∇ju+∇k∇Θiju−∇Θiju∇ku.

If F̃ is R-Einstein then by the Lemma 7.3

CF (∂i, ∂̂j , ∂̂k) + WF (Ou, ∂i, ∂̂j , ∂̂k) + Ψ
CHF
u (∂i, ∂̂j , ∂̂k) = 0. (7.10)

When n = 3, the tensor WH
F vanishes and hence the equation (7.10) reduces

to

CF (∂i, ∂̂j , ∂̂k) + Ψ
CHF
u (∂i, ∂̂j , ∂̂k) = 0. (7.11)

If u = constant then CH
F ≡ 0.

7.2. Proof of the Theorem 1.4 in dimension n = 4. From the Lemma 7.3,

if F̃ is R-Einstein metric then C̃F̃ vanishes. Then the equation (7.10) holds.

Applying ∇k to this equation, using the Definition 7.1 and the equation (7.10)

again, we get

0 = BF (∂i, ∂̂j)− SlkF WF (∂l, ∂i, ∂̂k, ∂̂j)

−
[
∇k∇lu− (n− 3)∇ku∇lu

]
WF (∂l, ∂i, ∂̂k, ∂̂j)

−∇kΨCHF
u (∂i, ∂̂j , ∂̂k) + Ψ

CHF
u (∂i, ∂̂j , ∂̂k). (7.12)

Since F̃ is locally an R-Einstein metric, the equation (1.1) is equivalent to

0 = SF (∂i, ∂̂j)−
1

n
JHF gij −∇j∇iu+∇iu∇ju

+
1

n

(
∇d∇du−∇du∇du

)
gij

+
(n− 1)

2n(n− 2)F
(∇ru∇qu)

∂(F 2grs − 2yrys)

∂yq
gklAsklgij

where JHF is the trace of ScalHF . Raising both indices and applying WF (∂l, ∂i, ∂̂j , ∂̂k)

to this equation, using the relation (7.7) in Lemma 7.4 and the equation (7.12)

we obtain

0 = BF (∂i, ∂̂j) + (n− 4)WF (Ou, ∂i, ∂̂j ,Ou)

+
[
(n− 3)∇ku−∇k

]
Ψ

CHF
u (∂i, ∂̂j , ∂̂k).

Therefore, in dimension n = 4, we have BF (∂i, ∂̂j)+
(
∇ku−∇k

)
Ψ

CHF
u (∂i, ∂̂j , ∂̂k) =

0.

If u = constant then BH
F ≡ 0.
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