1. C. S. Bagewadi and G. Ingalahalli, Ricci solitons in Lorentzian α-Sasakian manifolds,Acta Math Academiae Paedagogicae Nyiregyhaa ziensis, 28 (2012), 59{68.
2. C. S. Bagewadi, G. Ingalahalli and S. R. Ashoka, A study on Ricci solitons in Kenmotsu manifolds, ISRN Geom. Article ID 412593, (2013) 1{6.
3. W. Batat, M. Brozos-Vazquez, E. Garcia-Rio and S. Gavino-Fernandez, Ricci solitons on Lorentzian manifolds with large isometry groups, Bull. London Math. Soc., 43(6) (2011),1219{1227.
4. A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl.,20(1) (2015), 1-13.
5. A. M. Blaga, η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat, 30(2)(2016), 489{496.
6. M. Brozos-Vazquez, G. Calvaruso, E. Garcia-Rio, and S. Gavino-Fernandez, Threedimensional Lorentzian homogeneous Ricci solitons, Israel J. Math., 188 (2012), 385-403.
7. C. Calin and M. Crasmareanu, From the Eisenhart problem to Ricci solitons in fKenmotsu manifolds, Bull. Malays. Math. Sci. Soc., 33 (2010), 31{38.
8. T. Chave and G. Valent, Quasi-Einstein metrics and their renormalizability properties,Helv. Phys. Acta, 69(3) (1996), 344-347.
9. T. Chave, and G. Valent, On a class of compact and non-compact quasi-Einstein metrics and their renormalizability properties, Nuclear Phys. B, 478(3) (1996), 758{778.
10. J. T. Cho and M. Kimura, η-Ricci Solitons and real Hypersurfaces in a complex space form, Tohoku Math. J., 61(2) (2009), 205{212,.
11. O. Chodosh and F. T. Fong, Rotational symmetry of conical Kahler-Ricci solitons, Math.Ann., 364 (2016),777{792.
Geometric aspects of η-Ricci soliton 145
12. S. Dey and S. Roy,, and A. Bhattacharyya, A Kenmotsu metric as a conformal η-Einstein soliton, Carpathian Math. Pub., 13(-1) (2021), 110{118.
13. S. Dey and S. Roy, *-η-Ricci Soliton within the framework of Sasakian manifold, J. Dyn.Syst. Geom. Theory, 18(-2) (2020), 163{181.
14. S. Dey and S. Roy, Characterization of general relativistic spacetime equipped with η-Ricci-Bourguignon soliton, J. Geom. Phys. 178 (2022), 104578.
15. S. Dey and S. Uddin, Conformal η-Ricci almost solitons on Kenmotsu manifolds, Int. J.Geom. Meth. Mod. Phys. , 19(-8) (2022), 2250121.
16. D. H. Friedan, Nonlinear models in 2+ dimensions, Ann. Phys., 163(2) (1985), 318-419.
17. A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7 (1978),259-280.
18. M. Gulbahar, Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds, AIMS Math., 6(-2) (2021), 1366-1377.
19. R. S. Hamilton, Three manifold with positive Ricci curvature, J. Differential Geom. 17(1982), 255-306.
20. R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math., American Math. Soc., 71 (1988), 237{262.
21. A. Haseeb and R. Prasad, η-Ricci solitons in Lorentzian α-Sasakian manifolds, Facta Universitatis, Series Mathematics and Informatics, 35(-3) (2020), 713-725.
22. S. Kishor and P. Verma, Conformal Ricci soliton in para-Sasakian manifolds, Novi Sad J. Math., 52(-1) (2022), 17{28.
23. S. Kishor and A. Singh, η-Ricci Solitons On 3-Dimensional Kenmotsu Manifolds, Bull.Trans. Univ. Brasov., 13 (2020), no.-62, 209{218.
24. S. Kishor and P. Verma, Notes On Conformal Ricci Soliton In Lorentzian Para Sasakian Manifolds, Ganita, 70 (2020), no.-2, 17{30.
25. S. Kishor, P. K. Gupt and A. Singh, Certain Results on η-Ricci Solitons in α-SasakianManifolds, International Journal of Mathematics Trends and Technology(IJMTT), 46(-
2) (2017), 104-108.
26. J. Morgan and G. Tian, Ricci Flow and the Poincare Conjecture, American Mathematical Society Clay Mathematics Institute, (2007).
27. H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. Math.Anal., 3 (2012), 18{24.
28. K. Onda, Lorentz Ricci solitons on 3-dimensional Lie groups, Geom. Dedicata, 147(2010), 313-322.
29. S. Pahan, A note on η-Ricci solitons in 3-dimensional trans-Sasakian manifolds, Ann.Univ. Craiova, 47(-1) (2020), 76-87.
30. S. Pandey, A. Singh and O. Bahadr, Some geometric properties of η-Ricci solitons on three-dimensional quasi-para-Sasakian manifolds, Balkan Journal of Geometry and its Applications, 27(-2) (2022), 89-102.
31. S. Pandey, A. Singh and V. N. Mishra, η-Ricci solitons on Lorentzian para-Kenmotsu manifolds, Facta. Univ. Ser: Math. Inform. (2021) 419-434.
32. S. Pigola, M. Rigoli, M. Rimoldi and A. Setti, Ricci almost solitons, Ann. Sc. Norm.Super. Pisa Cl. Sci. (5), 10(4) (2011), 757-799.
33. D. G. Prakasha and B. S. Hadimani, η-Ricci solitons on para-Sasakian manifolds, J.Geom., 108(2) (2017), 383{392.
34. D. G. Prakasha, C. S. Bagewadi and Basavarajappa, N., On Lorentzian β-Kenmotsu Manifolds, Int. Jour. Math. Analysis., 19(2) (2008), 919-927.
35. R. Prasad and V. Kumar, Conformal η-Ricci solitons in Lorentzian para-Kenmotsu manifolds, Gulf. J. Math., 14 (2023), no.-2, 54-67.
36. R. Sharma, Certain results on K-contact and (K; µ)-contact manifolds, J. Geom., 89(2008), 138-147.
37. A. Singh and S. Kishor, Ricci Solitons On Para-Sasakian Manifolds Satisfying PseudoSymmetry Curvature Conditions, Palestine Journal of Mathematics, 11(-1) (2022), 583-593.
38. A. Singh and S. Kishor, Curvature Properties of η-Ricci Solitons on Para-Kenmotsu Manifolds, Kyungpook Math. J., 59 (2019), 149-161.
39. A. Singh and S. Kishor, Some Types Of η-Ricci Solitons On Lorentzian Para-Sasakian Manifolds, Facta Univ. (NIS), 33(-2) (2018), 217-230.
40. A. G. Walkar, On Ruses spaces of recurrent curvature, Proc. London Math. Soc., 52)(1950), 36-64.
41. Y. Wang, Ricci solitons on 3-dimensional cosymplectic manifolds, Math. Slovaca, 4(67)(2017), 979-984.