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Abstract. The object of the paper is to study η-Ricci solitons on Lorentzian

β-Kenmotsu manifolds, subject to specific curvature conditions. We recall some

basic knowledge on Lorentzian β-Kenmotsu manifolds. Then, we deal with η-

Ricci solitons on Lorentzian β-Kenmotsu manifolds. Next, we study the η-Ricci

solitons in φ-projectively semi symmetric Lorentzian β-Kenmotsu manifolds.

Afterward, we investigate η-Ricci solitons in Lorentzian β-Kenmotsu manifolds

admitting Codazzi type of Ricci tensor and cyclic parallel Ricci tensor. Ad-

ditionally, we consider η-Ricci solitons on recurrent Lorentzian β-Kenmotsu

manifolds. A concrete example has demonstrated the existence of η-Ricci soli-

tons in a Lorentzian β-Kenmotsu manifold.

Keywords: η-Ricci solitons, Einstein manifold, Lorentzian β-Kenmotsu man-

ifold, Projective curvature tensor.

1. Introduction

In the annals of mathematical history, the year 1982 heralded Hamilton’s

[19] introduction of the Ricci flow, accompanied by a rigorous proof of its
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existence. The Ricci flow was developed to support “Thurston’s geometric

conjecture” which denotes that every closed 3-dimensional manifold admits

a geometric decomposition. He demonstrated all compact manifolds into 4-

dimensions having a positive curvature.

The equation governing the Ricci flow is

∂

∂t
g(t) = −2Ric,

where, ‘Ric’ is the Ricci tensor of the metric g(t). A solution to this equation

(or a Ricci flow) is a one-parameter family of metrics g(t), parameterized by t

in a non-degenerate interval I, on a smooth manifold M satisfying the Ricci

flow equation. If I has an initial point t0, then (M, g(t0)) is called the initial

condition or the initial metric for the Ricci flow (or of the solution) [26].

On a compact Riemannian manifold M with metric g, a Ricci-soliton is a

similar solution to the Ricci-flow, evolving only by a one parameter family of

diffeomorphisms and scalings. The Ricci soliton is rigorously characterized by

the following equation

LV g + 2S + 2λg = 0, (1.1)

where LV is the Lie derivative in the V direction, S is Ricci curvature

tensor, g is a Riemannian metric, V is a vector field and λ is a scalar. Metrices

satisfying (1.1) are interesting and useful in physics and are often referred to

as quasi-Einstein metrics [8, 9]. Compact Ricci solitons are the fixed points

of the Ricci flow ∂
∂tg(t) = −2Ric, projected from the space of metrics onto its

quotient modulo diffeomorphisms and scalings, and often arise blow-up limits

for the Ricci flow on compact manifolds. Theoretical physicists have also been

investigating the equation of Ricci solitons, exploring its potential connections

with string theory. The initial contribution in this direction is due to Friedman

[16], who discusses some of its aspects.

The notion of η-Ricci soliton is more inclusive than the conventional Ricci-

flow. This idea was put forward by J. T. Cho and Makoto Kimura [10], and

they gave its equation by

Lξg + 2S = −2λg − 2µη ⊗ η, (1.2)

where, λ and µ are constants.

A Ricci soliton is said to be trivial, if V is either zero or Killing onM. Ricci

soliton is considered as a generalization of Einstein metric and often arises

as a fixed point of Hamiltons Ricci flow. In [32], Pigoli-Rigoli-Rimoldi-Setti

generalized the notion of Ricci soliton to Ricci almost soliton by allowing the

soliton constant λ to be a smooth function. In this case, we denote it by

(Mn, g, V, λ).

The Ricci soliton is shrinking, steady, and expanding depending on λ < 0,

λ = 0, λ > 0, respectively. Otherwise, it will be called indefinite. Moreover, if

the potential vector field V is the gradient of some smooth function u on Mn,
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i.e., V = Du, where, D is the gradient operator of g on Mn, then the Ricci

soliton is called a gradient Ricci soliton and the soliton becomes

Hess u+Ric = λg,

where, Hess u denotes the Hessian of u. The function u is known as the

potential function.

The works of Blaga [4, 5] and Prakasha et al. [33] related to η-Ricci solitons

are acknowledged in this paper. In particular, if µ= 0, then the notion of

η-Ricci solitons (g, V, λ, µ) reduces to the notion of Ricci solitons (g, V, λ). If

µ 6=0, then the η-Ricci solitons are called proper η-Ricci solitons. We refer

to [3, 6, 28] and references therein for a survey and further references on the

geometry of Ricci solitons on pseudo-Riemannian manifolds.

Ricci solitons and η-Ricci solitons are considered by many authors in different

contexts for instant: on Kahler manifolds [11], on contact and Lorentzian man-

ifolds [1, 2], on K-contact manifolds [36], on α-Sasakian manifolds [25], on Ricci

soliton in Lorentzian Para-Sasakian manifolds [24], on 3-dimensional Kenmotsu

manifolds [23], on Para-Sasakian manifolds [22], on η-Ricci soliton in Lorentzian

Para-Sasakian manifolds [39], on η-Ricci solitons on Para-Kenmotsu manifolds

[38], on Para-Sasakian manifolds satisfying pseudo-symmetry curvature condi-

tions [37], on Conformal η-Ricci Soliton in Lorentzian Para-Kenmotsu manifold

[31, 35], on some geometric properties of η-Ricci solitons on three-dimensional

quasi-para-Sasakian manifolds [30], etc. We also refer to similar studies in [7]

and [27]. In 2017, Yaning Wang [41] proved that if cosymplectic manifold M3

admits a Ricci soliton, then either M3 is locally flat or the potential vector

field is an infinitesimal contact transformation. Also, in [29], authors have pro-

vided some insight on trans-Sasakian manifolds. Dey et al. [12] also have set

up some new results on conformal η-Einstein soliton. Very recently, η-Ricci

soliton and Yamabe soliton and their generalizations and related research have

been studied by many authors [13, 14, 15, 18].

Therefore, with the above studies as motivation, we now turn our attention

to the behavior of η-Ricci soliton in Lorentzian β-Kenmotsu manifold.

The following sections provide an outline of how this paper is organized:

After a succinct introduction, in Section 2, we recall some basic knowledge on

trans-Sasakian manifolds. Section 3 deals with η-Ricci soliton on Lorentzian

β- Kenmotsu manifold. In the next section, we study the η-Ricci solitons in

φ-projectively semi symmetric Lorentzian β-Kenmotsu manifolds. In Section 5,

we have evolved η-Ricci solitons in Lorentzian β-Kenmotsu manifolds admitting

Codazzi type of Ricci tensor and cyclic parallel Ricci tensor. Section 6 deals

with η-Ricci solitons on recurrent Lorentzian β-Kenmotsu manifolds. In the

last section, we show an example to illustrate the existence of η-Ricci soliton

on 3-dimensional Lorentzian β-Kenmotsu manifold.
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2. Some Preliminaries on Lorentzian β-Kenmotsu Manifold

An n-dimensional differentiable manifold M is said to be Lorentzian β-

Kenmotsu manifold, if it admits a (1, 1)-tensor field φ, a contravariant vector

field ξ, a covariant vector field η and Lorentzian metric g which satisfy [34]:

η(ξ) = −1, (2.1)

φξ = 0, (2.2)

η(φL) = 0, (2.3)

φ2L = L+ η(L)ξ, (2.4)

g(L, ξ) = η(L), (2.5)

g(φ(L), φ(M)) = g(L,M) + η(L)η(M), (2.6)

for all L,M ∈ T (M).

Also, a Lorentzian β-Kenmotsu manifold M satisfies:

∇Lξ = −β[L+ η(L)ξ], (2.7)

∇Lη(M) = β[g(L,M)− η(L)η(M)], (2.8)

(∇Lφ)M = β[g(φL,M) + η(M)φN ], (2.9)

where, ‘∇’ denotes the operator of covariant differentiation with respect to the

Lorentzian metric g. Further, on a Lorentzian β-Kenmotsu manifold M, the

following relations hold [34]:

η(R(L,M)N) = β2[g(L,N)η(M)− g(M,N)η(L)], (2.10)

R(ξ, L)M = β2(η(M)L− g(L,M)ξ), (2.11)

R(L,M)ξ = β2(η(L)M − η(M)L), (2.12)

S(L, ξ) = −(n− 1)β2η(L), (2.13)

Qξ = −(n− 1)β2ξ, (2.14)

S(ξ, ξ) = (n− 1)β2, (2.15)

g(ξ, ξ) = η(ξ) = −1, (2.16)

where Q, R, S are the Ricci operator, Riemannian curvature and Ricci tensor,

respectively, and β is a constant. Also, S and Q are related by

S(L,M) = g(QL,M)

for all L,M ∈ χ(M).

Definition 2.1. An n-dimensional Lorentzian β-Kenmotsu manifold with con-

stants a, b and c and vector fields L,M defined on M, is called a Generalized

η-Einstein manifold if it satisfies the condition

S(L,M)= a g(L,M) + b η(L)η(M)+ cg(φL,M).
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Moreover, this Generalized η-Einstein manifold is called [21] η-Einstein, Ein-

stein and a special type of generalized η-Einstein manifold according as c = 0,

b = c = 0 and b = 0, respectively.

Definition 2.2. An n-dimensional Lorentzian β-Kenmotsu manifold is called

Projective curvature tensor P , if

P (L,M)N = R(L,M)N − 1

(n− 1)
[S(M,N)L− S(L,N)M ], (2.17)

where, R is the Riemannian curvature tensor and r is the scalar curvature of

the manifold.

3. η-Ricci soliton on Lorentzian β-Kenmotsu Manifold

Assume that a Lorentzian β-Kenmotsu manifold admits an η-Ricci soliton (g,

ξ, λ, µ) [21]. Then equation (1.2) holds, and therefore, we have

(Lξg)(L,M) + 2S(L,M) + 2λg(L,M) + 2µη(L)η(M) = 0. (3.1)

As we know, in a Lorentzian β-Kenmotsu manifold following relation holds:

(Lξg)(L,M) = g(∇Lξ,M) + g(L,∇Mξ) = −2βg(φL, φM). (3.2)

On combining equation (3.1) and equation (3.2), we get

S(L,M) = −λg(L,M) + βg(φL, φM)− µη(L)η(M). (3.3)

It provides

QL = −λL+ βL+ (β − µ)η(L)ξ. (3.4)

Putting M = ξ in equation (3.3) and using equation (2.1), equation (2.2),

equation (2.3) and equation (2.5), we have

S(L, ξ) = (µ− λ)η(L). (3.5)

From equation (2.13) and equation (3.5), it follows that

µ− λ = −(n− 1)β2. (3.6)

Consequently, in view of equation (3.3) and equation (3.6), we can state the

following theorem:

Theorem 3.1. If an n-dimensional Lorentzian β-Kenmotsu manifold with the

structure (g, ξ, λ, µ) admits η-Ricci soliton, then the manifold becomes gener-

alized η-Einstein manifold of the form:

S(L,M) = −λg(L,M) + βg(φL, φM)− µη(L)η(M).

and

µ− λ = −(n− 1)β2.
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In case, if we take µ=0 in equation (3.3) and equation (3.6), then we obtain

S(L,M) = −λg(L,M) + βg(φL, φM), (3.7)

and

λ = (n− 1)β2, (3.8)

respectively. As a consequence, we can state the following corollary:

Corollary 3.2. If an n-dimensional Lorentzian β-Kenmotsu manifold with the

structure (g, ξ, λ) admits Ricci soliton, then the manifold becomes a special type

of generalized η-Einstein manifold and its Ricci soliton is always expanding.

Now, we assume that an Lorentzian β-Kenmotsu manifold with the structure

(g, V, λ, µ) is Ricci soliton, such that V is pointwise collinear with ξ, [21] i.e.,

V = bξ, where b is a function then with the help of equation (1.2). Then, we

get

bg(∇Lξ,M) + (Lb)η(M) + bg(L,∇Mξ) + (Mb)η(L) + 2S(L,M) + 2λg(L,M)

+2µη(L)η(M) = 0,

which in view of equation (2.7) converts in the form

− 2bβg(φL, φM) + (Lb)η(M) + (Mb)η(L) + 2S(L,M) + 2λg(L,M) (3.9)

+2µη(L)η(M) = 0.

Taking M = ξ in equation (3.9) and making use of equation (2.1), equation

(2.3), equation (2.5) and equation (2.12), we infer

− (Lb) + [(bξ)− 2(n− 1)β2 + 2λ− 2µ]η(M) = 0. (3.10)

Again, if we take L = ξ in equation (3.10) and make use of equation (2.1), we

find

(bξ)− (n− 1)β2 + λ− µ = 0. (3.11)

Taking together the equation (3.10) and equation (3.11), it follows that

db = [−(n− 1)β2 + λ− µ]η. (3.12)

If we now apply the exterior derivative ‘d′ on equation (3.12), we arrive at

[−(n− 1)β2 + λ− µ]dη = 0.

which yields

µ− λ = −(n− 1)β2, dη 6= 0. (3.13)

Consequently, from equation (3.12) and equation (3.13), we obtain db = 0, i.e.,

b is a constant. For this reason, equation (3.9) takes the form

S(L,M) = −λg(L,M) + bβg(φL, φM)− µη(L)η(M). (3.14)
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Hence, in view of equation (3.13) and equation (3.14), we can state the follow-

ing theorem:

Theorem 3.3. If an n-dimensional Lorentzian β-Kenmotsu manifold with the

structure (g, ξ, λ, µ) admits η-Ricci soliton, such that V is pointwise collinear

with ξ, then V is a constant multiple of ξ and the manifold becomes a general-

ized η-Einstein manifold of the form S(L,M) = −λg(L,M) + bβg(φL, φM)−
µη(L)η(M) and µ− λ= (n -1)β2.

4. φ-projectively semi symmetric Lorentzian β-Kenmotsu manifolds

admitting η-Ricci solitons

In this section, we focus on the study of η-Ricci solitons in φ-projectively semi

symmetric Lorentzian β-Kenmotsu manifolds. Firstly, we see the definition of

φ-projectively semi symmetric. After that, we evaluate some results using the

definition of φ-projectively semi symmetric.

Definition 4.1. An n-dimensional Lorentzian β-Kenmotsu manifold is said to

be φ-projectively semi symmetric, if [20]

P (L,M)φ = 0,

for all L, M on ∈ χ(M).

LetM be an n-dimensional φ-projectively semi symmetric Lorentzian β-Kenmotsu

manifold admitting η-Ricci soliton. Therefore

P (L,M)φ = 0.

which yields

(P (L,M)φ)N = P (L,M)φN − φP (L,M)N = 0, (4.1)

for any vector fields L, M , N ∈ T (M). From equation (2.15), it follows that

P (L,M)φN = R(L,M)φN − 1

(n− 1)

[
S(M,φN)L− S(L, φN)M

]
, (4.2)

φP (L,M)N = φR(L,M)N − 1

n− 1

[
S(M,N)φL− S(L,N)φM

]
. (4.3)

On combining the equation (4.1), equation (4.2) and equation (4.3), we obtain

R(L,M)φN − φR(L,M)N − 1

n− 1

[
S(M,φN)L− S(L, φN)M

]
(4.4)

+
1

n− 1

[
S(M,N)φL− S(L,N)φM

]
= 0.
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Putting M = ξ and using equation (2.3), equation (2.9) and equation (2.12),

we get

S(L, φN) = −(n− 1)β2(g(L, φN). (4.5)

Taking into consideration equation (3.3), equation (4.5) converts into

[−λ+ β + (n− 1)β2]g(L, φN) = 0. (4.6)

Consequently, λ =β+(n-1)β2 and hence from equation (3.6), we get µ = β.

Now, we are ready to state the following theorem:

Theorem 4.2. If an n-dimensional φ-projectively semi symmetric Lorentzian

β-Kenmotsu manifold with the structure (g, ξ, λ, µ) admits η-Ricci soliton,

then λ =β+(n-1)β2 and µ = β.

Again, from the relations equation (3.3), equation (3.6) and equation (4.6), we

obtain

S(L,M) = −(n− 1)β2g(L,M). (4.7)

This leads to the following corollary:

Corollary 4.3. An n-dimensional φ-projectively semi symmetric Lorentzian β-

Kenmotsu manifold with the structure (g, ξ, λ, µ) that admits η-Ricci soliton

is an Einstein manifold.

5. η-Ricci solitons in Lorentzian β-Kenmotsu manifolds admitting

Codazzi type of Ricci tensor and cyclic parallel Ricci tensor

In this section, we study η-Ricci solitons in Lorentzian β-Kenmotsu manifolds

admitting Codazzi type of Ricci tensor and cyclic parallel Ricci tensor [17].

Definition 5.1. An n-dimensional Lorentzian β-Kenmotsu manifold is said to

have Codazzi type of Ricci tensor, if its Ricci tensor S of type (0,2) is non-zero

and satisfies the following condition:

(∇LS)(M,N) = (∇MS)(L,N),

for all L,M,N ∈ T (M).

Taking covariant derivative of equation (3.3) and making use of equation (2.7)

and equation (2.14), we find

(∇LS)(M,N) = β2
[
g(L,M)η(N)−g(L,N)η(M)

]
−βµ

[
η(N)g(φL, φM) (5.1)

+g(φL, φN)η(M)
]
.

If, we take Ricci tensor S as Codazzi type then, we have

(∇LS)(M,N) = (∇MS)(L,N). (5.2)
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Taking into consideration equation (5.1), equation (5.2) converts into

β2
[
η(L)g(M,N)− g(L,N)η(M)

]
− βµ

[
η(M)g(φL, φN) + η(L)g(φM,φN)

]
,

Putting L=ξ and using equation (2.1)-(2.3), equation (2.5) and equation (2.6),

we get

g(φM,φN)[βµ− β2] = 0, (5.3)

As we know, g(φM,φN) 6= 0,

µ = β (5.4)

and

λ = β + (n− 1)β2. (5.5)

Now from above, we are able to state the following theorem:

Theorem 5.2. Let an n-dimensional Lorentzian β-Kenmotsu manifoldM with

the structure (M, g, ξ, λ, µ) admits η-Ricci soliton. If this manifold M has

Ricci tensor of Codazzi type, then λ= β +(n-1)β2 and µ=β.

Definition 5.3. A Lorentzian β-Kenmotsu manifold n-dimensional is said to

have cyclic parallel Ricci tensor, if its Ricci tensor S of type (0,2) is non-zero

and satisfies the following condition:

(∇LS)(M,N) + (∇MS)(N,L) + (∇NS)(L,M) = 0, (5.6)

for all L,M,N ∈ T (M).

If, we assume (g, ξ, λ, µ) as η-Ricci soliton in an n-dimensional Lorentzian

β-Kenmotsu manifold having cyclic parallel Ricci tensor, then equation (5.6)

holds.

Now, if we take covariant derivative of equation (3.3) and make use of equation

(2.8) and equation (2.9), we obtain

(∇LS)(M,N) = β2
[
g(L,M)η(N)−g(L,N)η(M)

]
−βµ

[
η(N)g(φL, φM) (5.7)

+g(φL, φN)η(M)
]
.

In the similar manner, we have

(∇MS)(N,L) = β2
[
g(M,N)η(L)−g(M,L)η(N)

]
−βµ

[
η(L)g(φM,φN) (5.8)

+g(φM,φL)η(N)
]
,

and

(∇NS)(L,M) = β2
[
g(N,L)η(M)−g(M,L)η(N)

]
−βµ

[
η(M)g(φN, φL) (5.9)

+g(φN, φM)η(L)
]
.
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By using equation (5.7) and equation (5.8) in equation (5.6), we get

βµ
[
η(N)g(φL, φM) + η(M)g(φL, φN) + η(L)g(φM,φN)

]
= 0,

Putting N=ξ, above equation reduces to

βµg(φL, φM) = 0. (5.10)

As we know, the manifold under consideration is non-cosymplectic and

g(φL, φM) 6= 0.

Therefore, equation (5.10) provides µ=0. Thus, the η-Ricci soliton becomes

Ricci soliton.

As a consequence, we can state the following theorem:

Theorem 5.4. An n-dimensional non-cosymplectic Lorentzian β- Kenmotsu

manifold admitting η-Ricci soliton, whose Ricci tensor is of Codazzi type be-

comes a Ricci soliton.

6. η-Ricci solitons on recurrent Lorentzian β-Kenmotsu manifolds

Again in this section, we evaluate some results using definition of η-Ricci soli-

tons on recurrent Lorentzian β-Kenmotsu manifolds [40].

Definition 6.1. An n-dimensional Lorentzian β-Kenmotsu manifold is said to

be recurrent, if there exists a non-zero 1-form A such that [21]

(∇LR)(M,N)U = A(L)R(M,N)U, (6.1)

for all vector fields L,M,N and U on M. If the 1-form A vanishes, then the

manifold reduces to a symmetric manifold.

Assume that, M is a recurrent Lorentzian β-Kenmotsu manifold. Therefore,

the curvature tensor of the manifold satisfies equation (6.1). By a suitable

contraction of equation (6.1), we get

(∇LS)(N,U) = A(L)S(N,U). (6.2)

The above equation implies that

(∇LS)(N,U)− S(∇LN,U)− S(N,∇LU) = A(L)S(N,U), (6.3)

Putting U = ξ and using equation (2.6) and equation (2.12), we have

S(N,φ2L) = (n− 1)β2g(φL, φN)− β(n− 1)A(L)η(N). (6.4)

Taking into consideration equation (3.3), equation (6.4) takes the form

βg(φL, φN) =
[
(λ+ (n− 1)β2)

]
g(φL, φN)− (n− 1)βA(L)η. (6.5)
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Let us suppose that the associated 1-form A is equal to the associated 1-form

η, then from equation (6.4), we get

βg(φL, φN) = [λ+ (n− 1)β2]g(φL, φN)− (n− 1)βη(L)η(N). (6.6)

Replacing N by φ(N) in equation (6.6), we get

[λ+ (n− 1)β2 − β]g(φL,N) = 0. (6.7)

Now, since g(φL,N) 6= 0. We obtain

λ = −(n− 1)β2 + β and hence from equation (3.6), we have µ = β.

Hence, we can state the following theorem:

Theorem 6.2. If an n-dimensional recurrent Lorentzian β-Kenmotsu manifold

with the structure (g, ξ, λ, µ) is η-Ricci soliton, then

λ = −(n− 1)β2 + β,

and

µ = β. (6.8)

Now, from the relations equation (3.3), equation (3.6) and equation (6.7), we

obtain

S(L,M) = −(n− 1)β2g(L,M). (6.9)

This leads to the following corollary:

Corollary 6.3. An n-dimensional recurrent Lorentzian β-Kenmotsu manifold

with the structure (g, ξ, λ, µ) admitting η-Ricci soliton is an Einstein manifold.

7. Examining a 3-Dimensional Lorentzian β-Kenmotsu manifold: An

Illustrative Example

We take into consideration the three-dimensional manifoldM=(l,m, n) ∈ R3, n 6= 0,

where (l,m, n) are the standard coordinates of R3. For each point on M, the

vector fields

e1 = n2
∂

∂l
, e2 = n2

∂

∂m
, e3 =

∂

∂n
,

are linearly independent.

Let g be the Riemannian metric defined by

g(e1, e3) = g(e2, e3) = g(e1, e2) = 0,

g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1.

Let η be the 1-form defined by

η(N) := g(N, e3), for any N ∈ χ(M).

Let φ be the (1, 1)-tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.
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Then utilizing the linearity of g and φ, we get

η(e3) = 1, φ2N = −N + η(N)e3,

g(φN, φU) = g(N,U)− η(N)η(U),

for any N,U∈ χ(M).

Now, through direct computation, we have

[e1, e2] = 0, [e2, e3] = − 2

n
e2, [e1, e3] = − 2

n
e1.

The Koszul’s formula below describes the Riemannian connection ∇ associated

with the metric tensor g

2g(∇LM,N) = Lg(M,N) +Mg(N,L)−Ng(L,M)

−g
(
L, [M,N ]− g(M, [L,N ] + g(N, [L,M ]

)
. (7.1)

Using (7.1), we have

2g
(
∇e1e3, e1

)
= 2g

(
− 2

z
e1, e1

)
,

2g(∇e1e3, e2) = 0,

and

2g(∇e1e3, e3) = 0.

Therefore,

∇e1e3 = − 2

n
e1.

In a similar way, we get

∇e2e3 = − 2

n
e2, ∇e3e3 = 0,

which further yields

∇e1e2 = 0, ∇e1e1 =
2

n
e3, ∇e2e2 =

2

n
e3,

∇e2e1 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From the above, it follows that the manifold satisfies

∇Lξ = β2, for ξ = e3,

where β2 = 2/N . Thus, we can assert that, M is β-Kenmotsu manifold. In

this way, we know

R(L,M)N = ∇L∇MN −∇M∇LN −∇[L,M ]N. (7.2)

With the above mentioned formula and using (7.2), it’s easy to verify that

R(e1, e2)e3 = 0, R(e2, e3)e3 = − 6

n2
e2, R(e1, e3)e3 = − 6

n2
e1,
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R(e1, e2)e3 = − 4

n2
e1, R(e1, e2)e3 = − 6

n2
e3, R(e1, e2)e3 = 0,

R(e1, e2)e3 = − 4

n2
e2, R(e1, e2)e3 = 0, R(e1, e2)e3 = − 6

n2
e3.

Using the expression for curvature tensor provided above, we derive

S(e1, e1) = g
(
R(e1, e2)e2, e1

)
+ g
(
R(e1, e3)e3, e1

)
= −10

n2
.

Likewise, we have

S(e2, e2) = −10

n2
,

and

S(e3, e3) = −12

n2
.

Considering the given expressions for curvature tensors and Ricci tensor, we

are now able to conclude that

P (e1, e2)e3 = P (e1, e3)e3 = P (e2, e3)e3 = 0,

i.e., M is projectively flat.
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