Geometry of warped tangent bundles with Ricci-Flatness and shrinking solitions

Document Type : Original Article

Authors

Department of Mathematics, Payame Noor University 19395-3697, Tehran, Iran

Abstract

‎In this paper‎, ‎we investigate the geometric structure of the tangent bundle of a warped product of two pseudo-Riemannian manifolds‎. ‎Let (M,g) and (M-,g-) be smooth pseudo-Riemannian manifolds‎, ‎and consider the‎‎warped product manifold (M×M-,g+e2fg-)‎, ‎where f is a smooth warping function‎. ‎We construct a Sasaki–Matsumoto type lift of the warped metric to define a pseudo-Riemannian metric on the tangent bundle‎, ‎which depends on a pair of smooth scalar functions and related to the total kinetic energy‎. We derive necessary and sufficient conditions under which the lifted metric on is Ricci-flat‎, ‎expressed in terms of the curvature properties of the base manifold and the structure functions‎. ‎Furthermore‎, ‎we prove that‎, ‎equipped with the metric‎, ‎admits a one-parameter family of shrinking Ricci solitons‎.

Keywords


 1. Y. Alipour Fakhri and M. M. Rezaii, The warped Sasaki-Matsumoto metric and bundlelike condition, J. Math. Phy.51(2010), 122701.
2. B. Chow, et al,
The Ricci Flow: Thechniques and Applications. Part I: Geometric Aspects, American Mathematical Socity, (2007).
3. R. Deszcz and M. Kucharski,
On curvature properties of certain generalized RobertsonWalker spacetimes, Tsukuba J. Math. 23(1999) , 113-130.
4. J. Kern,
Lagrange Geometry, Arch. Math. (Basel). 25(1974), 438-443.
5. G.I. Kruchkovich,
On some class of Riemannian spaces(in Russian), Trudy sem. po vekt.i tenz. analizu 11(1961), 103-128.
6. V. Oproiu and N. Papaghiuc,
Some Classes of Almost Anti-Hermitian Structures on the Tangent Bundle, Mediterr. j. math. 1(2004), 262-282.
7. N. Papaghiuc,
A Ricci flat pseudo-Riemannian metric on the tangent bundle of a Riemannian manifold, Colloq. Math. 87 (2) (2001), 227-233, MR 1814664 (2002a:53086).