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Abstract. In this paper, we investigate the geometric structure of the tangent
bundle of a warped product of two pseudo-Riemannian manifolds. Let (M, g)
and (M, g) be smooth pseudo-Riemannian manifolds, and consider the warped
product manifold (M x; M, g+ e?fg), where f is a smooth warping function.
We construct a Sasaki-Matsumoto type lift of the warped metric to define a
pseudo-Riemannian metric on the tangent bundle, which depends on a pair
of smooth scalar functions and related to the total kinetic energy. We derive
necessary and sufficient conditions under which the lifted metric on is Ricci-
flat, expressed in terms of the curvature properties of the base manifold and
the structure functions. Furthermore, we prove that, equipped with the metric,
admits a one-parameter family of shrinking Ricci solitons.

Keywords: Ricci flat, warped pseudo Riemannian manifold, Ricci soliton.

1. Introduction

Ricci solitons, originally introduced in the context of Ricci flow by Hamilton,
serve as self-similar solutions and provide a natural generalization of Einstein
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metrics. A Ricci soliton on a pseudo-Riemannian manifold (M™, g) is a triple
(X, e), where X is a vector field and € a real constant, satisfying the equation:

Lxg+ 2Ric(g) + 2eg = 0. (1.1)

Such solitons are classified as shrinking, steady, or expanding depending on the
sign of . In particular, if X is a Killing vector field and Ric(g) = 0, the soliton
reduces to a homothetic Einstein manifold (see [2]). Warped product manifolds
are essential tools in differential geometry and mathematical physics, partic-
ularly in general relativity. Given two pseudo-Riemannian manifolds (M, g)
and (M,g) and a smooth warping function f : M — R, the warped product
M= M x ! M carries the metric § = g + e2fg. The curvature and geometric
behavior of M are closely tied to the properties of f, g, and ¢’. In this paper,
we consider the complete lift of a warped product metric to the tangent bundle
TM and analyze the resulting warped pseudo-Riemannian metric G on TM.
Using a Sasaki-Matsumoto type lift and a suitable energy-based deformation,
we define a new metric G depending on functions ¢(t) and 1 (t) of the kinetic
energy t. We then derive necessary and sufficient conditions under which the
tangent bundle manifold (T]/\Z , @) is Ricci-flat. Furthermore, we show that T’ M
admits a one-parameter family of shrinking Ricci solitons under certain geo-
metric constraints. Our approach also relates the warped pseudo-Riemannian
metric G to a Lagrangian formulation, enriching the geometric framework with
variational principles. This study contributes to the interplay between warped
products, tangent bundle geometry, and Ricci soliton theory, and may be rele-
vant to mathematical models in geometry and physics.

2. Preliminaries

Let (M,g) and (M,g) be two smooth manifolds with dim M = m and
dim M = n, respectively, and let M = M x M be the product of manifolds.
Then a local coordinates system in M is denoted by x? = (2%,u®), where
(x%) and (u®) are local coordinates system in M and M, respectively. In this
paper, the indexes {4,j,---}, {a,B,---} and {a,b,---} run over the ranges
{1,2,--- ,m}, {1,2,--- ,n} and {1,2,--- ;m,m+1,--- ,m + n}, respectively.

Suppose that (]Téf ,§ = g+ €2/g) is warped product Riemannian manifolds
with the warped function f : M — R. If we denote the Christoffel symbols of
M, M and M by fg o Iy and fg ,» respectively, then we have

b= (T3 0TS 5 Th oI5 0Ty T ),
where

o (2.1)

i T ™o i 2f Vi~
D =T5 T5,=0, Ty =—(¥)7g,
F?‘kzo, F?W:fj&;, Fngl“ﬁ

v

Here, f; :== gg{,,- and (/)" := gij‘%eTzf.
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Suppose that, x € M and y € Ty M, where x = (z,u) and y = (y, ) and
ToM = T,M & T,M. Then, the warped Levi-Civita connection Te ) of §
defines a splitting

T(TM) = V(TM) & H(TM), (2.2)
into wvertical and horizontal sub bundles respectively Locally, the integrable
vertical distribution V(TM ) is spanned by {2 37> dva} while the horizontal
distribution H(TM) is spanned by {51“ S 1 where (see [1]),

9 w0 g8 O
szt Ozt £ 0 9yi ¢ 0 9p8
R R

LN YA
du® = Ou“ @09y @ 0gys”
and ([3, 5])
Fjo—rz 0’ zo—fzéﬁv'y
fi 0=~ 00, Fi 0= Fa o+ fiy’sh.

—B . _ p
Here, I o = T/ 1/, Fa 0= Lo 407, Gao = Gapv” and gio = gijy’.
3. Sasaki-Matsumoto type Lift on Tangent Bundle

Let (]Téf = M x; M,g) be the warped product Riemannian manifolds and
Jab = gij + 62f§a5 be the warped metric. We define the warped kinetic energy
(or warped energy density) by

1 1,7 —= a
t,u9,0) = IvIE = 5 (95 @y + P gpee?),  B1)
where y € T(Lu)/]\z >~ T,M @& T,M. Certainly, t = t + €2/ where t(z,y) =
39i;(x)y'y? and t(u,v) := 37,5(u)v*v”. Also, we have

ot ot o

aF =gro & 907 = ¢ o (3.2)

Suppose, the functions ¢, : [0,00) — R are smooth such that, ¢(t) > 0 and
o(t)+2th(t) > 0 for every t (see [7]). Then, the warped Sasaki-Matsumoto type
lift of the gup (the symmetric M-tensor on T'M) can be introduced as follows

Gab = 0(t)(gij + € Gop) + () (gi0 + € Guo) (g0 + € T 0)-

Now, the following warped pseudo Riemannian metric will be considered on
TM:

G = 2(pgi; + wgiogjo)é*yi @ da’ + 2(@e2f§a5 + e4f§a0§60)6*va ® du”
—|—2¢62fgi0§605*yi ® du” + 2¢e2fgjo§a05*vo‘ ®@dx’ (3.3)
where

Syt = dy' + f; oda? + 1:}3 oduP  5*v® == dv®™ + f;l oda? + fg odu?
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and {dz’, du®,5*y*, 6v®} is the dual basis of adapted basis {2+, 2=, -2, 2}

oxt? du®? Jyt? Jvx I

Therefor
G(%’ 3iyy> = ¥gij + ¥giogjo,
G(éua 81;,6’) - (p62f§aﬁ + 1/,64)‘5&0?50’
G(éxz av5> = ve* giogs0,
G(&LO‘ 8y1) ¥e* 950900,
and

(55 55) = (s 5r) = (G 5) =S5 55) =0

(ay-35) =) = o ) = S 35) =©

Hence we have

0 0 Gij Gig
(@) = OG] OGM OGC‘J (C);“" (34)
Gaj Gop O 0
where
Gij := ¢gij + ¥gingjo,
Gip = ve* gingo = G,
Gap 1= pe fﬁaﬁ + et gaogﬁo-

The following Proposition is a direct result of the above relations.

Proposition 3.1. The matriz (G) is the positive definite symmetric, and has
an inverse with the entries

0 o A9 AW

~ 0 0 HY  HP
(H) = =~ Tg

HY H 0 0

H* H* 0 0
where,

i Ly ¥

ol TS

~. _ 2f ) ~ .
Hzﬁ — i(?l + 26r<;;)¢tp(t)>ylvﬂ = Hﬁl

_ 2
FoB = ges _ Y yeyf
o r(t)

z(t)y'y’

)
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Here,
s(t) = (1) ((t) + 200(1) ).
r(t) = (1) (o(t) + 2 B(D) )
269 (t)
P =14 T — s D)
2t (t)

4e2f 2t — s(t)r(t)
Therefore, fI“b(Jc, u,y,v) is a symmetric M -tensor on TM.

Remark 3.2. [3, 5] Let 6, V and V be the Levi-Civita connections of M, M
and M with respect to the metrics § = g + €*/g, g and g respectively. Also,
the components of curvature tensors of M, M and M will be denoted by Ry .4

R;kl and ng\ respectively. Then, the warped Riemannian tensors are

Dh  _ ph
Rijk = Rijk

Rly, = g (Vilh) + Fif)e*l g5, = — R,

DA _ ph _ ph _ ph  _
R = Rojp = Ry, = Ry, =0
DA Dh

Riﬂ = Raﬁk =0

Dh DA _ DX _ DA _
Rogy = Ropr = g, = 155, =0

Ry = (Vilfx) + fifx)0) = — Ry
~ —\ . _ _
Réﬁw = Ra,ﬁ”y + €2fg”fz‘fj(g[3fy53 - ga'yag)

In the following we determine the warped Levi-Civita connection V& of the
warped pseudo Riemannian metric G defined by (3.3). First, the Lie brackets
of the above vector fields are stated as follows.

Lemma 3.3.

o7 0] = [ 2] = [ 3] = o] =0 69

o o] _ _pk 0
Byl 82 | i joyk

8 | _ | & _ _1v _9
[W’ 5u3:| - [ava’m] - Pj a vy (37)
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&t &
| 0zt dxd ] RUO oyh
511 9 §u5:| ’Lﬂ)\v ayh Rzﬁky 81)
5 < < 5 (3.8)
ua) 511] —R j)\v By —-R jk}y By
" Je]
ua ) 5ul3 OzBO v

where, RUO = R?jkyk and EZ;;O = El[w\”)\

Proposition 3.4. Let (M =M fo, g+¢€25g) be a warped Riemannian man-
ifold. Then, the Levi-Civita connection V& of the warped pseudo Riemannian
metric G defined by (3.3) on TM has the following expression

_ Ak _O
v@/ay dyJ A’LJ 3y
Va/ay dv5 Aiﬂ ()ya (3 9)
_ vy :
v@/av"‘ 6yJ - BCE] 8v'Y ’

v§

0/0v™ 81}5 Boc,@ ovY

_ (k6"
va/ayl 6901 =

ij Szk
Va 9 5uﬂ = sz 66;
o0 8/0y* ou bz (3.10)

a/0v™ dyJ - Daj ou’

va/ava vB T Daﬁ SuY

Clcé

iJ §xk

V4. 0/0y =

szt

VG 0/00% =T7 o + Oy e

st
R 3.11)
5* (
Byj 1—\’; J avw sz FYTRR)

ljay

V

5~k 5
V aﬁ I Bak+raﬁauw+Daﬁ5uw

§*

G & _ rpk_0
v * 630] El] oyk + Fl J 51’“ ’
G 5* 5*
v * 5u5 lﬂ Byk + Fz B 6u’* ’
VG v o_pr o s (3.12)
* Sxd aj 8m a j éu“f ’
G [ 5
v 8 Juf T a,B BU‘Y + Fa B 51’“ + FOé Bur
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where the components A”, Afﬁ, Daj, Daﬁ’ EZ’“J, Ffﬁ,

M -tensor fields on TM and are given by

P, and Q)5 define

/

A

A?j =&t 20 9205 + 9]05k> [% - d;ztg) (' +v+ 277[1/?)} giogjoy"
+<% Wf) 2(t ))gijy ;

Aky = €205, |:<P,+1/) ok + (% _ 1/J4¢/622ffg)¢/+wp(t))gioyk},

Bv_ =e*gjo0 {292&067 + ( w%z(t))yaovﬂ,

Bl 55 (Gl 1 305) + (5 S0

LAt ( % _ w(w +w)rz£e2f W't (t))%o?ﬁov” + WZS) <<p’ + 1 — 2e2f¢f),
Cl = 224 (giodk — (1+ 28 (ot - £ (0gi09508" ),

éz,@ — o2f ¢ (111))1/1( = 2«pr¢2ft3 p(t )gioﬁgoyk),

DV — o2f (v2s(1tll)) ( = 2<p:b(:) p(t)gjo?ao?ﬂ)a

DYy = e 222 (Gap0) — (1+ 258 p(1) G507 — 2 £5p(1)Ga0T500" ),
Ef = _Rhijog + mz(t)Roz‘joyk

+1 (% fh _ Slf:)z(t)ykyh) (Roinogjo + Rojnogio — Roijogno),

Fikﬂ =0 (% + 2¢7§12§)2f¥p(t))§;00gi0§70yk’

2.2f [ 21 =
P =Ll (2+ %P(ﬂ)}{%oghogao”»

‘*2

(3.13)

Q

e?f e’z 5
o = —R,\a,eo?w\ + wT( =+ %p(t))ROaﬁoW

o2f 025 _ = -
+¢2 (é?ﬂ - f(t) p(t)v7v? )(Romoggo + Rogr0Ga0)-

Proof. The proof is completed by direct calculations and the application of
Remark 3.2 and Lemma 3.3. (]

Let R be the curvature tensor field of the warped Levi-Civita connection
V& on T M, then we have

R(X,Y)Z =V§V§Z - ViV§Z - Vi v Z
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for any X,Y,Z € I'(TM). By straightforward computations we obtain

* * * 1

(R, 67)6% = (VY BL, — VY EL ) o)
1 *

+ (VTG = VT + B Chy — BACH, + RlyoChy ) o7,
(2R(57,67)0% = (VTS , = VT |+ ClEL, — ChEL,
+R%0A§Lk)al + (v((s}k)cé'k - v((slf)cfk>5l*v

I, ] 0! 1 .
(BYR(57, 9)0% = (ChEY, — ER AL, — oy + (VS0 Cl )or, (314)

« 1 act, *
(4)73(51' ) aj)ak = (V((s;)Aé'k)al + (A;'chgh - ayjik - Ci};ccilzj)él ’

1
(5)R (93, 0,)57 = (Gt — Gt + CluCly = CRCY )7,
9A! oAl

(6)R(D:,0;)0) = ( A O A AL — AQkA;h)al

(YRGS, 6577 = 2> ¥ Ragno0h + (V5 Qs — VI Qu, +Th Pl

; ngk)a#'i_ (% - %—ng ’yfg k —f’; ng k+f2 vfg A
_fi vfg xt QEVDZA - gvDZﬂRAUJ) 5;2’
(B)R(6%,8*B)y = (ngf(’;A - Dgwng)a;g - (% - TTea 4T JThy
_fi vfg k +fg vfg AT fg ng AT ng l)fa - DQVQKB +§3503§v>aﬂ
+(V Dy, - V@D, — T Dl ~ T Dl )

w
* * ™ ™ A * 1
(9R(5,09)0; = (D3, T — TCl )07 + (D2, Qs — @2, B, (3.15)
oQy 2 Tk F *
T )0y + (VS D, — T, Dl )b,

&
2
I

(0)R(S, 95)0, = (B, Th  — T — T, AL o

2 B o ODEL Y s+

+(v((5;;)BZy - Ff} 'yBll;B)a# + (Dg’yDg)\ - D//}ng/\ T TouP )5IU
. aDh oDk, .

(LR (D, 03)85 = (G- — T + DY, Dl = D2y Dl )0

8B4 9B!,
(12)R (00, 99)0; = (S5 = S + BY, Blix = B, By )0

o ok §*FE,  &FF =
(3RS, 67)03 = (S + Zop + FLTF = FLTS 4+ T2 FK
DX F )0, + (FLCY = FLCl + R CE )7,
(L4)R(67,87)0, = (CLBS — CL B + R, AL )

0°CHL _SCH LA Ak _TA Gk 4 ATk _ ALk s
T — e RO T O T G Gl ) O
* * A aFi’: 6*0;7 >

(15)R (67, 0,)6% = (CL B — S — FL Al )op + (552 + CL T,

™ Ak L Ak s (3.16)
7]'—‘1' ’ijA - Fi jclv)(sk’

: AL Rk i A

(16)R(57,0,)0, = (S5t — TH A%, + AL TE, — T AL Yo, + (4L,
ock, .

G - CLCE) %,

(AT)R(@;, 95)8 = (

acr, ack
ayt  ByI

Ak Ak
dAk A}

oy’ Oyi

Al k Al k *
+ Lk - CLak)ar,

(18R (:,0,)0, = ( + A A - AL AL )5,
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( ) ( 52)52 = (Pé\kfla AT P&\kflﬁ ,\)al + (f/a\ fl - fA fla /\)51*
Tl P pATH - PATY T ,QF —F’\
+{ e L4 Pols n = Pgpl'a A+ 175 @), x@5s )0

(P3P~ P ,ng +T3 a0~ T2 W Th 5 )67
(2

0)R(5%, 8%)0r = (1“?3 W5 o =T kTS ﬂ)al + (ﬁgkrfx »~ Dol A)57

N A
( WA o Fa wTh 5+ D3 ka - D)\kQI;\LB + RaﬁoBfk)au

é D“ Ay —
(e o AL BT
(21)R(87,, 0p)5; = (ngQm kB sk )a + (DT (3.17)

§* DY - " - I *
v ﬁczl)k)(sl* + ( 25+ Dﬂkr)\ o—Ta »DAg — Ty BDf\k)(S;u
7>\ ~
(22)R (0%, 03)0k = (BMFA o—T0 AL —T, ﬁA&k)az

+ (e Ble 4 BATY L — T ka)a + (BADS, — 555 — DADY, )6

* 8D“ *
(23)72'(8&766)616 = ( (’)IUL; - ay%k + DﬂkDﬁfoz - Dék )\I@)(SH,

aB",  9BM -
(24YR (0, 030k = (ot — 5 + BYBY, — BBYs ) 0

(25)R(67,05)05 = (F’\ W — (Suﬁ )8; ( gt + Py Th — BRIV

L, (67T ~ ;o
~T! /fpz%)a + (PBkCAi + Rw,\cjk” )51 + ( 5o+ F WLi s — ELDls
T4 T+ R0 DY ) o
(26)R (5;,5;;)@ = (DAL + Rlpyor AL, )a+ (T 1 Ch - )5*

5" ~ o~
+( o 4T T, T T — CI P+ Ry Bkk>8

5*D ~ TN "
+< ’3"+D Wiy =T D“.—Cjk j)éu,
(2 )R (5* 85)5/? = (Dﬂszl/\ )8; Eng;ﬁaM

s+ Do ) o o )
(5 + DALY - T Df, T2 .08, )60,
5* N 5*B" Ay o= TN ~y =~
(28)R(67,05)0k = Bﬂkcl)\a (Tﬂk + BN, — T B, — F;\,Bng)au
J Ko Sx*
- D,BJ6M7 ) o
(29)R(,65)05 = Pay, AL\ + (ngCfA -

(3.18)

el oP
5éfgk)5;*+( ok cng“)a

+(8F —Ci T T Z.D;‘k)(s*
(30)R(D,, %) = (fg WAL, = Yo+ DOt — (AL
T3 Bl )0+ (St — ALY, )
(BR(S7,65)0} = (ng%

)5* (8;1 — ! D;‘5>5;,

dvh
(32)R(5f75§)8k:(B2kAl,\i aa )al (83 Aik Alﬁ)al“
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* N\ SE 5*F]k'y Tl k _7A k
(33)R(5%, ;)02 = (Lo —TL _EE —Th F5) 0y
TN Tk Nk _OTE L Tk B oAk ) g¢
(5 La = Qo O — —5ar — Lo 15 — Rov Cl'y)(sk
H(FLDE T Qry — T8 ) Tw ,)a#
I o J Y Tva xJ [e%% J
e SRS S U .
+<F34“/Dgl + F; 'yFa e iy v Ia VF? At johth,;'y)(sw
* T T B 6*f§‘ il
(BR(S;,07)0, = (T2 T, — T4 [ T¥ = 552 = D Pl
Bl oA Ak Ch oo (UTE L P e A
+R, v Al'y)ak + ( sues — Lo vCJ]‘Cl)(sk + ( ot + 13 Ta x +C, Py
Ry B, )0 + (T3 Dl + CLTH | = 205 — DALTY oy,
. " ~ =X sk 5 Ck A "
()R, 0)87 = (— T b —To Ay, ) o+ (5 — DA, CY )
Al ph AL TR ™A o\ s
+CL PO+ (T, ~ T3 D8, ) (3.19)
X sTAF X =g Ak s
(36)R(05,07)0, = (S5 — T4 A% =Ty LAY, )0k — D), Choy
TN puo AT AL P s
(=T By, + AT )0, + AL D5y,
OFF N
(37)R (D, 67)57 = ( o _ Dg,ijg)ak +FL B,
afj'v 5*D5'y A 14 AT A *
+< v dxd + Fj ’YD>\a - DO&’YF;JJX + FO‘ jDé\L’Y)(S#’
) )
(38R (0 07)0, = (5 — B2, )
orH ~ "Bl =~ = A N
"‘( goat 03 By — =55 — Béwré‘ AT jBé\L'y)aM + Gl Db or,
* aéjkv A * S/ ODEL Y s«
(39)R (D, 0)0% = (S — DA,CH )0t + (€1, Dty — 2552 ),
oA%, ; VIS oOBh
(10)R (0, 0)0 = (o — B, A% )on + (AL, Bl = 2552 )0,
where, we put
1 §*T!
VE;;)T;IC =5t t Féthhk — )Ty, — F?kT]l'h
ATy =TT T e T T ST T
L LBy T Toue aptpy “ltaptuy “taytpw
for every 3-tensors T, and T}, . Here, 67 := £=, 6% = £z, 0; = %i and
Do = 2.
[ 8,004

The warped Ricci curvature tensor, is a contractions of the warped Rie-
mann curvature tensor R (with respect to warped pseudo-Riemannian metric
(), and denoted by Ric. It is defined as

Ric(G)(X,Y) = trace(Z — R(Z, X)Y)

for every X,Y, Z € I‘(T]Tf).
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Corollary 3.5. From the Proposition 3. and also the relationships (3.14),
(3.15), (3.16), (3.17), (3.18) and (3.19), we get the warped Ricci curvature

tensor as follows

(1)Ric(67,0%)

i7j

. 2 2 (07
= 2(Ric(9))i; + afia];j - C;LjEl}; + Ezl'jD
(2)Ric(6},0;) =0,

lay

— ack. oD, A (3.20)
(3)R1C(8¢, 8]) = AijCﬁc — By;;'] — C’fl]C'l’; — Oy(:] —+ AéleO&
AR é)A;L
+AéjA?h - Aéz]‘Alhi + ayljh - ayiha
3 [ S* * Sl (e2h)k A an
(1)Ric(85, 65) = 2(Ric(9))ap — 2557 Tap — QusChy — ot

~ NN
+D26Q’;\'y - éﬁBL + QZ}WDL - éﬁqu - T, BArltlh —T, A%,
(2)Ric(6},,03) =0,

—— o0t o oAl e oDk
(3)Ric(0a, 0p) = — i + BA,Cly, — 22 + Bl AL, — 2

+B),Bl — B\,B! + B,D% — D),Dll + 2P _ 2Das
uB= A af T A aB A B A v

OvH
(3.21)

(DRic(87,05) = FlsCli, — FizCl + R, CF

N . oF"
~ChgBl = FlgBl, + 5, + Flg Al
(2)Ric(d;,95) = 0, 522)

__ . 3.22
(3)Ric(9;,05) =0,

=P 2 ack A N
(4)Ric(8;,0p) = ALz CF. — T Al Al — A} AL

iR oBY A7 oAl AR
+Aé@BZ¢ B 8;"“ + AéBDlMu + 8yhﬁ - ay’zﬁ'

4. The Warped Lagrange Geometry

In this section, we find some interesting geometric properties of the tangent
bundle TM = TM & TM by using a Lagrangian function defined as integral
of a real smooth function ¢ : [0,00) — R such that depending on the warped

kinetic energy only, i.e.

L= /cp(t)dt

where,

t=t(t,1) =t + 1.

(4.1)

We have ¢ € [0,00) for all (y,v) € TM. We suppose o(t) > 0 and ¢/(t) > 0
for every ¢t > 0, therefore, the Lagrangian function L is regular [4]. Now, by
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using relation 3.2, we consider the symmetric M-tensor field on TM. , defined
by the components

0?L ,
Gij = ENER © giogjo + Pgijs (4.2)
0?L o B
Gap = 0P e 9'Ga0dp0 + € oG ag, (4.3)
0?L B
Gai = Do = ¢'e* gioGao- (4.4)

As usual in the warped Lagrange geometry, a regular Lagrangian L defines
a warped non-linear connection N? on the bundle TM given by the warped

—_~—

dx?t ou®

horizontal distribution H(T'M) spanned by {( o ), ( g )} where

by 0 j 0 3 0
( ')'_81:1' Ni(x,u,y,v)a—yj Ni(x,u,ym)w

( 5 );:i—Né(x,u,y,v)i—Ng(l',uayﬂ/)i

Sue Ou® OyJ ovP
and
NZ = (Nza Niﬁ’ NZW Ng)
Here
N INE ONP . HNJ ONP
N/ == NP.=Z" N/ = NP .= 4.5
¢ oyt 7" oyt 7 v’ @ ove’ (4.5)
where
, ~. .7 O0°L 0L oL
ON' 1= HY ( — k : v =
(ByJ ok + Ay duy YT )
~ . 0L O%L oL
Hzﬁ k vy __ Y 4.
* (avﬂawky + 9vBow © 8u5>’ (4.6)
2N = 1 ( OL oy OL i 8—L>
T OvPour vPoLk” oup
~ . %L 0L oL
aj 0% k_ Y
+H (ayjam” * ogionrY 5a7) (4.7)

Using (4.1), (4.5), (4.6), (4.7) and by straightforward computation the following
theorem obtained.

Proposition 4.1. Given the reqular Lagrangian defined by (4.1), we have
H(TM) = H(TM).
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Corollary 4.2. (1) Taking into account the Proposition (4.1) and the condi-
tion ¥ = ¢ in the expression (3.3) of G, it follows that, the warped pseudo
Riemannian metric G defined on the tangent bundle TM =TM & TM, is the
complete lift of the quadratic form

h:= Gjda’ ® dr? + Gipda’ @ du’ + Gojdu® @ dz' + Gopdu® @ duP.  (4.8)

(2) From relation (3.13) it easily follows that

h
0AG, 04

oyI oyt
A?jAZh - AZjAZi =0,
0BY, 0Bl

v OvH ’
B;BB*;Cy — B;BB/;H =0,
0AY,  0AL, .

oyh Oyt ’

Now, let us consider p = ¢’ then, from relations (3.20), (3.21) and (5.22) it
follows that

(DRic(67,67) = 2(Ric(7))ij + 5odss.
(2)Ric(07,9;) = 0, (4.9)
(3)Ric(d;,0;) = 0,
DA S% S* 3 ek
()Ric(6%,05) = 2(Ric(@))as — 25 Fus
0Q, T A
- 61}"’[ - QgﬁB;\yw - Ffl ﬁA{Lh - FOt 5A§ha (4 10)
(2)Ric(57,05) = 0, '
(3)Ric(Da, 05) = — a2 + B, AL,
— - OF)
(Ric(0],85) = —FlyBfs, + 52 + FlgAly
(2)Ric(d7,95) = 0, (4.11)
T 4.11
(3)Ric(0;,65) =0,
— N > BB’;M
(4)Ric(9;, 0p) = Al B, — 5
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5. Main Results
Using the Corollary (4.2), we obtain the main results of this paper as follows.

Theorem 5.1. Suppose, (T]\Aj7 Q) is the warped pseudo Riemannian manifold,
where G is defined by (3.3). Assume the warping function f : M — R holds in
the following conditions:

.0,
Vif=0, () = k=0, 5.1
f ) (e ) axk ( )
If

AR A PR oB*
81);;8 - Bg\cﬂAl)c\k - 07 AiﬁB;L - ayﬁi“ =0
Q7 .
6w5 + QQBB% +T, BA}/\Lh =0, (5.2)

FlL B OF FlLoAh —
—Figby, + gy T g, =0,
then, the following assertions are equivalent:

(1): The warped pseudo Riemannian manifold (TM7 G) is Ricci flat.

(2): The warped Riemannian manifold (1\7 =M x;y M,g=g+e27g) is
Ricci flat, and the functions ¢(t) and ¥ (t) are related by the condition
@' =1 N

(3): The warped Riemannian manifold (M = M x; M,§ = g + €2/g)
s Ricci flat and the warped pseudo Riemannian metric G is the com-
plete lift of the quadratic form h in the expression (4.8), where the
components Gij, Gop and Gy, are defined by (4.2), (4.3) and (4.4).

Theorem 5.2. Suppose, the warped Riemannian manifold (M xfﬁ, g+e?fg)
is Ricci flat, and the warped pseudo Riemannian metric G is complete lift of
the quadratic form h. Whenever relations (5.1) and (5.2) are established then,
for every function F € C*(M x; M), a triple (M x ; M,G,VEF) is the steady
gradient Ricci soliton.

Proof. By using (3.4) and relation (HessF)(X,Y) = (V9)% y F we have

VG V5 F = fcfj%,

V5 VS F = —cfj%

V§, VEF = —Dgﬁ%,

V§. VG F = —Dlﬁ%
y OF

VEVEF = -Clym~
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- OF
G —G _ N
VagvaiF— Dz‘[}aury
A OF
G G _ N
V5, V5 F = —=D}j5—,
A OF
G oG _ k
VEVe = —Clagr

So the condition ¢’ = 1 in the Theorem (5.1) and Proposition (3.4) requires
that
k _ Ak v Y
Ck =0, ¢k =0, DI, =0, D}; =0,
therefore, HessF = 0. (I

A warped product Riemannian manifolds (M = M x FM,g=g+e*'g) can
be considered. The tangent bundle TM = TM @ TM carries important global
vertical field

0 0
. k Y
L=y Ayk Y a0

which dose not vanish on the manifold TM° = TM \ {0} , and is independent
of any Riemannian metric on the base manifold M = M x s M. It is called the
warped Liouville vector field.

Theorem 5.3. Let the warped Riemannian manifold (M =Mx;M,g+e*7g)
be a Ricci flat. Whenever relations (5.1) and (5.2) are established then, the
tangent bundle TM carries a 1-parametric family of shrinking Ricci solitons
(G.,Lye) fore <0.

Proof. We have

L(Gij) = 2t(¢'gij + ¢" giogjo) + 2¢' giogjo + 2 (' gi; + ¢ giogjo),  (5.3)
L(Gia) = 227G 0gi0(¢" (t + 27T) + &), (5.4)

L(Gag) = 26> t(¢'Gap + € 0" Ga0Ts0) + € (¢ + 2¢") 700750
+2te™ (/G + "€ GaoTs0)- (5.5)

Then, by using (1.1), (5.3), (5.4) and (5.5), for the warped Liouville vector field
LL the following cases occur:

1: Ric(G) on (8%“ 667*]‘) yields

L(Gij) + (2 + 1)Gij =0,
which is equal to

(2t + (22 + 1)) g5 + (26 + 80") + (2 + 1)¢' ) giogs0 = 0.
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—~—

2: Ric(G) on (8%“ %) (or (a‘za, 5‘5;)) yields

L(Gia) + (2e + 1)Gig = 0,

which is equal to

e2f (tho” + (2 + 3)(,0')gi0§a0 =0.

which is equal to
(266 + (22 + 1)9)Gus + (202 + t6") + (22 + 1)¢' ) G0 = 0.
Applying Lemma 1 of [6] the three previous cases are equivalent with
2t = —(2e + 1)¢p.

Hence, o(t) = =21 and o(t) > 0. Also, the condition @(t) 4 2t¢’(t) > 0
is equivalent with e < 0 and therefore, the triplet (Ge,LL,¢) is shrinking Ricci
solitons. O

6. Conclusion and Future Directions

In this work, we established a geometric framework for studying Ricci-flat
metric on warped product manifolds M = M x ! M and their tangent bun-
dles TM. By introducing a Sasaki-Matsumoto lift, we constructed a pseudo-
Riemannian metric G on TM and derived explicit conditions (Theorem 5.1-
5.3) under which (T M, G) inherits Ricci-flatness or admits shrinking Ricci soli-
tons.

Key takeaways include:

e The equivalence between Ricci-flat structures on M and TM hinges on
the warped function f satisfying V2 f = 0 and the vanishing of specific
tensor fields (Eq. 5.2).

e The Liouville vector field . naturally induces a family of shrinking
solitons (G, L, ) for € < 0, governed by the ODE ¢(t) = ¢~ (2+1),

Future directions:

e Extend this work to Lorentzian warped products, relevant in general
relativity.

e Investigate the role of Lxg for non-Killing vector fields X.

e Explore applications in geometric mechanics, where TM models phase
spaces.
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