About the invariance of the Cartan connection relative to a h-Matsumoto change

Document Type : Original Article

Authors

1 Department of Mathematics, Guru Ghasidas Vishwavidyalaya, Bilaspur, CG, India

2 Guru Ghasidas Vishwavidyalaya, Bilaspur, CG, India

10.22098/jfga.2025.17203.1156

Abstract

In the present paper, we have studied the Matsumoto change L with an h-vector bi(x,y). We have derived some fundamental tensors for this transformation. We have also obtained the necessary and sufficient condition for which the Cartan connection coefficients for both the spaces Fn=(Mn,L) and Fn=(Mn,L) are same.

Keywords


 1. M. K. Gupta and A. K. Gupta, Hypersurface of a Finsler space subjected to an hexponential change of metric. Int. J. Geom. Meth. Mod. Phys. 13(10) (2016), 1650129.
2. M. K. Gupta and P. N. Pandey,
Hypersurfaces of conformally and h-conformally related Finsler spaces. Acta Mathematica Hungarica; 123(3) (2009), 257-264.
3. M. K. Gupta and A. K. Gupta,
h-exponential change of Finsler metric. Facta Univ. Series: Math. Inform. 31(5) (2016), 1029-1039.
4. M. K. Gupta and P. N. Pandey,
Finsler space subjected to a Kropina change with an h-vector. Facta Univ. Series: Math. Inform. 30(4) (2015), 513-525.
5. M. K. Gupta and A. Sahu,
On Douglas Tensor of Generalized Matsumoto Finsler Space. Lobachevskii Journal of Mathematics 45(2) (2024), 685-692.
6. M. K. Gupta, A. Sahu, and C. Ozel,
On Douglas tensor of infinite series Finsler space.Facta Univ. Series: Math. Inform. (2025), 049-055.
7. M. K. Gupta and A. Sahu,
On Matsumoto-Randers change on m-th root Finsler metric, Palestine J. Math. 14(1) (2025), 262-268.
8. M. K. Gupta, A. Sahu, and A. Tayebi,
On Conformal-Matsumoto change of mth root Finsler metrics. Facta Univ. Series: Math. Inform. 38(5) (2023), 895-903.
9. H. Izumi,
Conformal transformations of Finsler spaces II. Tensor, N.S. 33(1980), 337-359.
10. M. Matsumoto,
On C-reducible Finsler spaces, Tensor, N.S. 24(1972), 29-37.
11. M. Matsumoto,
A slope of a mountain is a Finsler surface with respect to a time measure, J. Math. Kyoto. Univ. 29(1)(1989), 17-25.
12. Z. Shen
Lectures on Finsler geometry. World Scientific, 2001.
13. C. Shibata,
On invariant tensors of β-changes of Finsler metrics. J. Math. Kyoto. Univ. 24(1) (1984), 163-188.
14. H. S. Shukla, O. P. Pandey and K. Mandal,
Matsumoto change of Finsler metric by h-vector. South Asian Journal of Mathematics, 5(3) (2015), 109-116.
15. A. Tayebi and M. Shahbazi Nia,
On Matsumoto change of mth-root Finsler metrics. Publ. Ins. Mathematique, 101(115) (2017), 183-190.
16. A. Tayebi, T. Tabatabaeifar and E. Peyghan,
On Kropina change for mth-root Finsler metrics. Ukrainian Mathematical Journal, 66(1) (2014), 160-164.
17. B. Tiwari and G. K. Prajapati,
On generalized Kropina change of mth-root Finsler metric. Int. J. Geom. Meth. Mod. Phys. 14(05) (2017): 1750081.