On a family of Einstein like Walker metrics

Document Type : Original Article

Authors

1 Universite Alioune Diop, UFR SATIC, Departement de Mathematiques, Equipe de Recherche en Analyse Non Lineaire et Geometrie, B. P. 30, Bambey, Senegal

2 Universite Andre Salifou de Zinder, Departement des Sciences Exactes, B. P. 656, Zinder, Niger

10.22098/jfga.2025.16924.1150

Abstract

A four dimensional pseudo-Riemannian manifold of signature (2, 2) is called a Walker manifold if it admits a parallel degenerate plane field. Einstein like metrics are generalizations of Einstein metrics. In this paper, we study the curvature properties of a family of four dimensional Walker manifolds. We give conditions on the coefficients of the metric so that the Ricci tensor of the metric is parallel, cyclic parallel and Codazzi respectively.

Keywords


 1. W. Batat, G. Calvaruso and B. De Leo, On the geometry of four-dimensional Walker manifolds, Rend. Mat. Appl., VII. Ser. 29(2) (2009), 163-173 .
2. C. Boubel and L. B. Bergery,
On pseudo-Riemannian manifolds whose Ricci tensor is parallel, Geom. Dedicata. 86(1-3) (2001), 1-18 .
3. M. Brozos-V´azquez, E. Garc´ıa-Rio, P. Gilkey, S. Nikevi´c and R. V´azquez-Lorenzo.
The Geometry of Walker Manifolds. Synthesis Lectures on Mathematics and Statistics, (5),2009.
4. G. Calvaruso,
Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds, Geom. Dedicata. 127 (2007), 99-119.
5. M. Chaichi, E. Garc´ıa-R´ıo and Y. Matsushita,
Curvature properties of four-dimensional Walker metrics, Classical Quantum Gravity. 22 (2005), 559-577.
6. M. Ciss, I. A. Kaboye and A. S. Diallo,
Killing vector fields on a family of fourdimensional Walker manifolds, J. Tensor Soc. (N.S.) 18 (2024), 37-43.
7. A. S. Diallo and M. Hassirou,
Examples of Osserman metrics of (3; 3)-signature, J. Math. Sci. Adv. Appl. 7(2) (2011), 95-103.
8. A. S. Diallo, M. Hassirou and O. T. Issa, Walker Osserman metric of signature (3; 3),Bull. Math. Anal. Appl. 9(4) (2017), 21-30.
9. A. S. Diallo, A. Ndiaye and A. Niang,
On pseudo-Riemannian A-manifolds, J. Adv.Math. Stud. 16(4) (2023), 422-428.
10. A. Gray,
Einstein-like manifolds which are not Einstein, Geom. Dedicata. 7(3) (1978),259-280.
11. B. Mbodj, A. S. Diallo and I. A. Kaboye,
Locally conformally symmetric condition on four dimensional strict Walker metrics, Int. J. Geom. 13(3) (2024), 109-117.
12. A. G. Walker,
Canonical form for a Riemannian space with a parallel field of null planes,Quart. J. Mat Oxford. 1(2) (1950), 69-79.