1. M. Afkhami, K. Khashyarmanesh and K.Nafar, Generalized Cayley graphs associated to commutative rings, Linear Algebra Appl. 437(3) (2012), 1040{1049.
2. R. Akhtar, T. Jackson-Henderson, R. Karpman, M. Boggess, I. Jim´enez, A. Kinzel, D.Pritikin, On the unitary Cayley graph of a finite ring, Electron. J. Combin. 16(1) (2009),Research Paper 117, 13 pp.
3. D. F. Anderson, M. C. Axtell, J. A. Stickles, Zero-divisor graphs in commutative rings,Commutative algebra, Noetherian and non-Noetherian perspectives, 23{45, Springer,New York, 2011.
4. R. Aravamudhan and B. Rajendran, On antipodal graphs, Discrete Mathematics. 49(1984), 193-195.
5. A. Assari and F. Sheikhmiri, Normal edge-transitive Cayley graphs of the group U6n,Int. J. Comb. 2014, Art. ID 628214, 4 pp.
6. A. Assari, N. Hosseinzadeh, and D. Macpherson, Set-homogeneous hypergraphs, Journal of the London Mathematical Society, 108(5) (2023), pp.1852-1885.
7. A. Assari, H. Kasiri, and A. R. Alehafttan, GRAPHS induced by vector spaces, Palestine Journal of Mathematics, 12(3) (2023), 216-223.
8. A. Assari, and M. Rahimi, Graphs generated by measures, Journal of Mathematics,2016(1), ID:1706812, Doi.org/10.1155/2016/1706812.
9. A. Assari, and M. Rahimi, On Beck’s Coloring for Measurable Functions, Iranian Journal of Mathematical Sciences and Informatics, 16(2) (2021), 1-10.
10. I. Beck, Colouring of commutative rings, J. Algebra. 116(1) (1988), 208-226.
11. A. Badawi, On the Dot Product Graph of a Commutative Ring, Communications in Algebra. 43(2015), 43-50.
12. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra. 42(1)(2014), 108-121.
13. A. Badawi, On the total graph of a ring and its related graphs: a survey, Commutative algebra, 39{54, Springer, New York, 2014.
14. A. Cayley, Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation. Amer. J. Math. 1(2) (1878), 174-176.
15. J. B. Conway, A Course in Functional Analysis, Springer-Verlag, 1994.
16. M. R. Darafsheh, A. Assari, Normal edge-transitive Cayley graphs on non-abelian groups of order 4p, where p is a prime number, Sci. China Math. 56(1) (2013), 213-219.
17. C. Ir`ene; O. Hudry, A. Lobstein, Minimizing the size of an identifying or locatingdominating code in a graph is NP-hard, Theoret. Comput. Sci. 290(3) (2003), 2109-2120.
18. X. G. Fang, C. H. Li, M. Y. Xu, On edge-transitive Cayley graphs of valency four,European J. Combin. 25(7) (2004), 1107-1116.
19. C. Godsil, On the full automorphism group of a graph, Combinatorica. 1(3) (1981),243-256.
20. C. Godsil, G. Royle, Algebraic graph theory, Graduate Texts in Mathematics, 207.Springer-Verlag, New York, 2001. xx+439 pp.
21. R. Halaˇ s, M. Jukl, On Beck’s colouring of posets, Discrete Math. 309(13) (2009), 4584-4589.
22. B. L. Hartnell, D.F. Rall, On dominating the Cartesian product of a graph and K2,Discuss. Math. Graph Theory. 24(3) (2004), 389{402.
23. S. K. Nimbhorkar, M. P. Wasadikhar, L. Demeyer, Colouring of meet-semilattices, Ars Combin. 84 (2007) 97-104.
24. C. ER. Praeger, Finite normal edge-transitive Cayley graphs, Bull. Austral. Math. Soc.60(2) (1999), 207-220.
25. P. J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. 22(4) (1988),445-455.
26. D. H. Smith, Primitive and imprimitive graphs, Q. J. Math. 22 (1971), 551-557.
27. D. R. Wood, An algorithm for finding a maximum clique in a graph, Oper. Res. Lett.21(5) (1997), 211{217.