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Abstract. In this paper, we introduce a novel class of graphs based on Hilbert

spaces, termed Hilbert graphs. Constructed using the inner product defined

on a Hilbert space, Hilbert graphs leverage the concept of orthogonality, where

orthogonal elements correspond to adjacent vertices. We demonstrate that

Hilbert graphs are regular and vertex transitive, with the clique number equal

to the dimension of the corresponding Hilbert space. Our investigation en-

compasses various properties of Hilbert graphs, including connectivity, girth,

diameter, and chromatic number, and we draw comparisons with Cayley graphs

and zero divisor graphs.
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1. Introduction

Assigning a graph to other mathematical objects is an investigation subject

to mathematicians in both fields. One of the earliest assignments is Cayley

graph which is stablished by Cayley to illustrate and translate the concepts

of group theory into graph theory [14]. Since every ring is an abelian group

with the summation, Akhtar et.al. extended the concept of Cayley graphs

to rings [2] and shortly after, lots of authors have found lots of properties of

such graphs. Similar generalizations of Cayley graphs have been investigated

by researchers [1]. Some other ideas for assignment of a graph to a ring are

stablished by I. Beck [10]. Beck’s idea stablished on colouring of a ring in the

sence that no two zero divisor elements of a ring in which their multiplication is

zero have the same colour. He conjectured if the chromatic number and clique

number of such graphs coincide. But Anderson et.al [3] found some counter

example and brought a new definition for zero divisor graphs and this concept

was investigated by several authors. After that some authors assigned a graph

to other mathematical objects which were similar to the zero divisor graphs

(For instance see [3, 6, 7, 8, 9, 11, 12, 13]). This motivated us to define a new

kind of graph which is based upon a Hilbert space.

The possible structure for the full automorphism group of a graph is investi-

gated by lots of authors, specially when we assign a graph to some mathematical

object, because the symmetric properties of a graph is completely related to its

automorphism group [19]. Some of symmetric properties such as vertex tran-

sitivity and edge transitivity of a graph arise from the automorphism group of

the graph. For instance every Cayley graph of a group and consequently every

Cayley graph of a ring is vertex transitive, since the group itself acts transi-

tively on vertices[20] and some of them are edge transitive as well [18]. Even

more, in a very special case of Cayley graph Γ of a group G, the normalizer of

G in Γ acts transitively on the set of edges of Γ which is called normal edge

transitive [5, 16, 24]. But zero divisor graph of a ring is not vertex transitive.

We will prove thought the Hilbert space does not act on the vertices of Hilbert

graph, but the Hilbert graph is still vertex transitive. We also find the girth

of a Hilbert graph, which is similar to the zero divisor graph’s in some cases.

Therefore, we introduced a graph which has some properties of Cayley graphs

as well as some properties of the zero divisor graph of a ring, i.e., it generalizes

both concepts.

We will also prove that the chromatic number and the clique number of a

Hilbert graph coincide and are equal to the dimension of the Hilbert space.

Thus, as in [21, 23], we have introduced a family of graphs in which the Beck’s

conjecture holds.
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2. Hilbert graphs and their graph properties

In this section, we consider Hilbert spaces over the field F = R. Through

this paper, by a basis of a Hilbert space, we mean a Hilbert basis [15].

For the real Hilbert space H, define the following equivalence relation on

H \ {0}:
∀x, y ∈ H x ∼ y ⇐⇒ ∃λ > 0 x = λy.

The collection of all equivalence classes of the previous relation is denoted by

H0. For simplicity, we denote each equivalence class [x] by x. If we pick an

element x of H0 such that ||x|| = 1, we may easily assume that H0 = S where

S is the unit ball

{x ∈ H : ||x|| = 1}.
Now, we are ready to present the following definition. The Hilbert graph of

a Hilbert space H is a graph Γ(H) = (V,E) where V = H0 and E = {(x, y) ∈
H0 × H0 :< x, y >= 0}. In other words, two vertices x and y are adjecent if

and only if x and y are orthogonal. Note that the previous definition is well-

defined since < λx, y >=< x, λy >= λ < x, y > for all λ ∈ R and x, y ∈ H0.

Also, it is clear that Γ(H) is a simple graph.

Example 2.1. Γ(H) = K2 iff H = R.

Example 2.2. If H = R2, then the set of vertices of Γ(H) is V = S1. Also

Γ(H) is a regular graph of degree two. N(i,−i) = {j,−j} which has two

elements, but N(i, j) = ∅.

We recall that a regular graph is a graph where each vertex has the same

number of neighbors; i.e., all vertices have the same degree.

we have the following general fact about the Hilbert graphs.

Theorem 2.3. For any Hilbert space H, the Hilbert graph Γ(H) is regular.

Proof. Let x, y ∈ V . Let S = {h ∈ H : ||h|| = 1} and N(x) be the set of

vertices of Γ(H) adjacent to x. Then

N(x) = span({x})⊥ ∩ S

and

N(y) = span({y})⊥ ∩ S.
Since span({x})⊥ and span({y})⊥ are hyperspaces in H, there are maximal

orthonormal sets B1 = {vi}i∈I and B2 = {wi}i∈I such that

N(x) = {v =
∑
i∈I

λivi :
∑
i∈I

λ2i = 1}

and

N(y) = {w =
∑
i∈I

λiwi :
∑
i∈I

λ2i = 1}.
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Clearly, the map ψ : N(x)→ N(y) defined by

ψ(
∑
i∈I

λivi) :=
∑
i∈I

λiwi

is a bijection, therefore card(N(x)) = card(N(y)). It completes the proof. �

Next we will discuss the connectivity, girth and diameter of a Hilbert graph.

Recall that a graph is connected when there is a path between every pair of

vertices. In a connected graph, there are no unreachable vertices. A graph that

is not connected is disconnected. The girth of a graph is the length of a shortest

cycle contained in the graph. If the graph does not contain any cycles (i.e., it’s

an acyclic graph), its girth is defined to be infinity. The distance between two

vertices in a graph is the number of edges in a shortest path connecting them.

Diameter of a graph is the maximum distance between pairs of vertices of the

graph.

Theorem 2.4. For any Hilbert space H, we have

(1) If dimH = 2, then Γ(H) is disconnected, grΓ(H) = 4 and diamΓ(H) =

∞,

(2) If dimH > 2, then Γ(H) is connected, grΓ(H) = 3 and diamΓ(H) = 2.

Proof. If dimH = 2, then it is easily seen that the cardinal number of each

connected component is 4 but V (H) is infinite, implying Γ(H) is disconnected,

hence diamΓ(H) = ∞ and Γ(H) is disjoint union of 4 circles, i.e., its girth

number is 4.

Now suppose dimH > 2. For any two vertices x and y, span({x, y}) is a pure

subspace of H, Thus span({x, y})⊥ is nonempty. Suppose z ∈ span({x, y})⊥.

Hence z is adjacent to both x and y, and diamΓ(H) = 2. Every 3 elements of

an orthogonal basis is a circle, i.e., girth of Γ(H) is 3. �

2.1. Clique number and Chromatic number of Γ(H). A clique is subset

of vertices of an undirected graph, such that its induced subgraph is complete;

that is, every two distinct vertices in a clique are adjacent. Cliques are one of

the basic concepts of graph theory and are used in many other mathematical

problems and constructions on graphs. Cliques have also been studied in com-

puter science: the task of finding whether there is a clique of a given size in a

graph is NP-complete. Clique number of a graph G is the number of vertices of

maximum clique in the graph and denoted by ω(G). The chromatic polynomial

counts the number of ways a graph can be coloured using no more than a given

number of colours and denoted by χ(G).

Theorem 2.5. Let H be a Hilbert space. Then the clique number of Γ(H) and

the dimension of H coincide.
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Proof. Let B be an orthogonal basis for the Hilbert space H. By definition, B
will be a clique of Γ(H), and hence ω(Γ(H)) > dimH.

Suppose that we have a clique C such that card(C) > card(B). Thus C
contains pairwise orthogonal elements of H. Therefore, we can extend C to a

basis for H with cardinality greater than B. A contradiction, i.e., ω(Γ(H)) 6
dimH. �

It is well known that χ(G) > ω(G) for a graph G. Thus Theorem 2.5 bring

us a lower bound for the chromatic number. In the next theorem we will prove

the equality.

Theorem 2.6. For any given Hilbert space H, the chromatic number of Γ(H)

is equal to the dimension of H.

Proof. Suppose that B is an orthonormal basis for H and card(B) = α. If we

assign α disjoint colours to the disjoint elements of B and denote them by ωb
for each b ∈ B, we then can colour all vertices of Γ(H) in the following way.

Assume that a is a common neighbourhood of all but one element of B.

Suppose a is adjacent to B \ {b}, thus a belongs to (B \ {b})⊥ which is < b >.

But < b > ∩Sn−1 = {b,−b}, i.e., a = b or a = −b. In this case we can assign

the colour ωb to a, since if c is adjacent to a, one of the following cases may

happen.

Case I: c is also adjacent to B \ {b}, thus

c ∈ (B \ {b})⊥ =< b >

which implies c = b or c = −b. But < ±b, b >= ±1 6= 0, a contradiction

with the asumption.

Case II: c is adjacent to a, but is not adjacent to at least one element of B
different from b such as d. We then can assign ωd to c.

Therefore, every vertex of Γ(H) which is adjacent to all but one elements of B
can be coloured by these α colours.

Now if D = B \N(a) has more than one element, by axiom of choice we can

choose a d ∈ D. We now can assign ωd to a, because if c is a neighborhood of

a not in B, one of the following cases may happen.

Case III: N(c) ∩ B = B \ {d}. Similar arguments in case I, shows c = ±d, which

is not adjacent to a, by the assumption. A contradiction.

Case IV: N(c) ∩ B has at least one more element except for d, such as e. We

then can assign ωe to c.

Thus we can continue the procedure to colour all vertices of Γ(H). �

Theorem 2.6 also bring us a graph which is not finitely colourable.

Corollary 2.7. If H is an infinite dimensional Hilbert space then Γ(H) can

not be finitely colourable.
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We also can find some graphs with countable colourable.

Corollary 2.8. For a Hilbert space H, χ(Γ(H)) = ℵ0 if and only if H is

separable.

Proof. A Hilbert space is separable if and only if it admits a countable orthonor-

mal basis. This fact combined with Theorem 2.6 completes the proof. �

2.2. Dominating number. A set D ⊆ V of vertices in a graph Γ = (V,E)

is a dominating set if every vertex v ∈ V is an element of D or adjacent to

an element of D. The domination number γ(Γ) of a graph Γ is the minimum

cardinality of a dominating set of Γ (see [25, 17, 22]).

Theorem 2.9. For any given Hilbert space with dimH > 2, the domination

number of Γ(H) is infinite.

Proof. Suppose that a finite subset of V (G) such as D is a dominating set of

G. Let D = {a1, . . . , an} for some integer n. For every element of D such as

a, the neighborhood of a is the hyperspace < a >⊥. D is a dominating set,

therefore

V (Γ) = H0 = (D∪ < a1 >
⊥ ∪ · · · ∪ < an >

⊥) ∩H0.

Thus H is the union of a finite set D and finite union of it’s pure subspaces,

which is a contradiction. �

2.3. Antipodal of Γ(H). In 1971 Smith [26] initiated the concept of antipodal

graph of a graph G as the graph A(G) having the same vertex set as that of G

and two vertices are adjacent if they are at the distance of diam(G) in G. A

graph is antipodal if it is the antipodal graph A(H) of some graph H.

The following theorem is proved by Aravamudhan et. al [4].

Theorem 2.10. A graph G is an antipodal graph if and only if it is the an-

tipodal graph of its complement.

We have the following theorem for Γ(H).

Theorem 2.11. Let H be a Hilbert space with dimH > 3, then

(1) The antipodal of Γ(H) is the complement of Γ(H);

(2) Γ(H) is an antipodal graph.

Proof. (1) By Theorem 2.4, Γ(H) is connected and every pair of vertices

are either adjacent or have a distance equal to the diameter of the

graph Γ(H). Therefore, two vertices x and y are not adjacent if and

only if d(x, y) = diamΓ(H), i.e.,

A(Γ(H)) = Γ(H)c.

(2) Apply Theorem 2.10 and part 1.

This completes the proof. �
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3. Group properties of Γ(H)

A bijection mapping σ : V → V ′ is an isomorphism between two graphs Γ =

(V,E) and Γ′ = (V ′, E′) if and only if it preserves the edges. An isomorphism

from a graph to itself is an automorphism of a graph. The set of automorphisms

of a given graph Γ is a group with the composition operation and denoted by

Aut(Γ). The more bigger is the automorphism group of a graph, the more

symmetric is the graph. Finding the automorphism group of a graph may be

too hard to determine in general, but lots of symmetric properties of such a

graph may be discovered. Since Aut(Γ) is a permutaion group of the vertex

set of a given graph Γ , it acts on the set of vertices of Γ as well as the set of

edges of Γ. If Aut(Γ) acts transitive on the set of vertices or edges of Γ, then

the graph Γ is called vertex transitive or edge transitive respectively.

Theorem 3.1. H1 and H2 are isomorphic Hilbert spaces if and only if Γ(H1)

and Γ(H2) are isomorphic graphs.

Proof. Let H1 and H2 be isomorphic Hilbert spaces. There exists an inner-

product preserving isomorphism φ : H1 → H2. Let Vi be the set of the vertices

of Γ(Hi) (i = 1, 2). Define

ψ : V1 → V2

by

ψ([x]) := [φ(x)].

ψ is well-defined, since if [x] = [y] then x = λy for some λ > 0, therefore

φ(x) = λφ(y) which implies

ψ([x]) = [φ(x)] = [λφ(y)] = [φ(y)] = ψ([y]).

On the other hand, if [x] and [y] are adjacent then < x, y >= 0. Since φ is

inner-product preserving then < φ(x), φ(y) >= 0, therefore ψ([x]) = [φ(x)] is

adjacent to ψ([y]) = [φ(y)]. It shows that ψ preserves the adjancy. Finally, ψ

is bijective since φ is bijective.

Conversely, let Γ(H1) and Γ(H2) be isomorpohic graphs. Then the clique

number of Γ(H1) coincides to the clique number of Γ(H2). Therefore, by The-

orem 2.5, we have dimH1 = dimH2, so H1 and H2 are isomorphic Hilbert

spaces. It completes the proof. �

Theorem 3.2. For any Hilbert space H, the Hilbert graph Γ(H) is vertex

transitive.

Proof. We consider the following cases:

Case I: Let dimH = n < +∞. By Theorem 3.1, we may assume that H = Rn.

Let B = {e1, e2, ..., en} be the standard basis of Rn. First let x ∈ V =

Sn−1. Extend the set {x} to a basis B′ = {x, x2, x3, ..., xn} for Rn.
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Apply the Gram-Schmidt process to find an orthonormal basis B′′ =

{x, v2, v3, ..., vn} for Rn. Now consider the matrix Ax with columns

x, v2, v3, ..., vn. Since B′′ is an orthonormal basis then AtxAx = I. We

also have Axe1 = x. Since detAx = ±1, we may assume that detAx =

1 by replacing vn by −vn if necessary. Note that we still have Axe1 = x.

For y 6= x, applying the previous procedure, we may find an orthog-

onal matrix Ay with detAy = 1 and Aye1 = y. Therefore,

e1 = A−1x x = A−1y y

and so, x = AxA
−1
y y. It suffices to set ψ = (AxA

−1
y )|V .

Case II: Let dimH = ℵ0. Let B = {e1, e2, e3, ...} be an orthonormal basis for

H. First let x ∈ V = {h ∈ H : ||h|| = 1}. Extend the set {x} to a

basis B′ = {x, x2, x3, ...} for H. Apply the Gram-Schmidt process to

find an orthonormal basis B′′ = {x, v2, v3, ...} for H. Define the linear

operator Tx : H → H by Tx(e1) = x and Tx(ej) = vj (j > 2). Tx is an

inner-product preserving linear operator, since if v =
∑n
j=1 λjej and

w =
∑n
k=1 µkek then

< Tx(v), Tx(w) > = < Tx(

n∑
j=1

λjej), Tx(

n∑
k=1

µkek) >

= <

n∑
j=1

λjTx(ej),

n∑
k=1

µkTx(ek) >

= < λ1x+

n∑
j=2

λjvj , µ1x+

n∑
k=2

µkvk >

= λ1µ1 ||x||2︸ ︷︷ ︸
1

+

n∑
k=2

λ1µk < x, vk >︸ ︷︷ ︸
0

+

n∑
j=2

µ1λj < vj , x >︸ ︷︷ ︸
0

+

n∑
j=2

n∑
k=2

λjµk < vj , vk >︸ ︷︷ ︸
δjk

=

n∑
j=1

λjµj

= < v,w > .

For y 6= x, let Ty : H → H be as in the previous discussion, i.e., Ty is

an inner-product operator such that Tye1 = y. Therefore,

e1 = T−1x x = T−1y y

and so, x = TxT
−1
y y. It suffices to set ψ = (TxT

−1
y )|V .
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Case III: Let dimH = α > 2ℵ0 . Let B = {ei}i∈I be an orthonormal basis for

H where card(I) = α. Fix j0 ∈ I. Let x ∈ V . Then span({x})⊥
is a hyperspace in H. Let B′ = {vi}i∈I be an orthonormal basis for

span({x})⊥. (Note that the elements of B′ may be indexed by I).

Therefore B′′ = {x} ∪ B′ is an orthonormal basis for H. Define the

linear operator Tx : H → H by

Tx(ej0) = x, and Tx(ei) = vi (i 6= j0).

For y 6= x, let also Ty : H → H be an inner-product operator such

that Tyej0 = y. Again, as in case II, we may set ψ = (TxT
−1
y )|V .

Then, we get the proof. �

Corollary 3.3. Given any cardinal number α, there exists a regular vertex

transitive graph Γ such that χ(Γ) = ω(Γ) = α. Moreover, if α ≥ 3, the graph

is also antipodal.

Proof. Let α be a cardinal number. Let I be any set such that card(I) = α.

Set

l2(I) := {(xi)i∈I : xi ∈ R,
∑
i∈I
|xi|2 < +∞}.

It is known that H = l2(I), equipped by the inner-product

< (xi)i∈I , (yi)i∈I >:=
∑
i∈I

xiyi

is a Hilbert space with dimH = card(I) = α [15]. Now, set Γ = Γ(H). By

Theorems 2.3, 2.6 and 3.2, Γ is a regular vertex transitive graph such that

χ(Γ) = ω(Γ) = dimH = α.

Finally, If α ≥ 3, by Theorem 2.11, the graph is also antipodal. �

Conclusion

In this paper, we introduced the concept of Hilbert graphs, a novel class of

graphs constructed using the inner product defined on Hilbert spaces. By lever-

aging the concept of orthogonality, we demonstrated that Hilbert graphs are

regular and vertex transitive, with the clique number equal to the dimension of

the corresponding Hilbert space. Our exploration of various properties, includ-

ing connectivity, girth, diameter, and chromatic number, revealed intriguing

parallels and distinctions between Hilbert graphs and other well-known graph

structures such as Cayley graphs and zero divisor graphs. The significance of

Hilbert graphs lies in their potential to unify concepts from functional analysis,

graph theory, and algebra. By providing a new framework for understanding
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the relationships between these fields, Hilbert graphs not only generalize ex-

isting concepts but also open new avenues for research and applications. Ad-

ditionally, we suggested potential applications in quantum mechanics and the

generalization of Hilbert graphs to other inner product spaces.

Our findings contribute to a deeper understanding of graph theory and its

intersections with other mathematical disciplines, offering new insights and op-

portunities for future research. The study of Hilbert graphs provides a rich

and promising area for further investigation, with the potential to uncover new

connections and applications across various fields of mathematics.

Acknowledgment: The authors would like to thank the referee(s) for their

comprehensive and useful comments which helped the improvement of this work

to the present form.
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