On tangent sphere bundles with contact pseudo-metric structures

Document Type : Original Article

Authors

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

Abstract

In this paper, we introduce a contact pseudo-metric structure on a tangent sphere bundle TεM. we prove that the tangent sphere bundle TεM is (κ, μ)-contact pseudo-metric manifold if and only if the manifold M is of constant sectional curvature. Also, we prove that this structure on the tangent sphere bundle is K-contact iff the base manifold has constant curvature ε.

Keywords


 1. D. E. Blair, T. Koufogiorgos, and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math., 91(1995), 189-214.
2. G. Calvaruso and D. Perrone,
Contact pseudo-metric manifolds, Differ. Geom. Appl.,28(2010), 615-634.
3. P. Dombrowski,
On the geometry of the tangent bundle, J. Reine Angew. Math.,210(1962), 73-88.
4. N. Ghaffarzadeh and M. Faghfouri,
On contact pseudo-metric manifolds satisfying a nullity condition, J. Math. Anal. Appl., 497(2021), No. 124849, 16.
5. O. Kowalski,
Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold, J. Reine Angew. Math., 250(1971), 124-129.
6. D. Perrone,
Curvature of K-contact semi-Riemannian manifolds, Canad. Math. Bull.,57(2014), 401-412.
7. S. Sasaki,
On the differential geometry of tangent bundles of Riemannian manifolds,Tohoku Math. J. 10(1958), 338-354.
8. M. Sekizawa,
Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J.Math., 14(1991), 407-417.
9. S.-i. Tachibana and M. Okumura,
On the almost-complex structure of tangent bundles of Riemannian spaces, Tohoku Math. J. 14(1962), 156-161.
10. T. Takahashi,
Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J.21(1969), 271-290.
11. Y. Tashiro,
On contact structures of tangent sphere bundles, Tohoku Math. J. 21(1969),117-143.