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Abstract. In this paper, we introduce a contact pseudo-metric structure on

a tangent sphere bundle TεM . We prove that the tangent sphere bundle TεM

is (κ, µ)-contact pseudo-metric manifold if and only if the manifold M is of

constant sectional curvature. Also, we show that this structure on the tan-

gent sphere bundle is K-contact if and only if the base manifold has constant

curvature ε.
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1. Introduction

In 1956, S. Sasaki [7] introduced a Riemannian metric on tangent bundle TM

and tangent sphere bundle T1M over a Riemannian manifold M . Thereafter,

that metric was called the Sasaki metric. In 1962, Dombrowski [3] also showed

at each Z ∈ TM, TMZ = HTMZ ⊕ V TMZ , where HTMZ and V TMZ or-

thogonal subspaces of dimension n, called horizontal and vertical distributions,
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respectively. He defined an almost Kählerian structure on TM and proved that

it is Kählerian manifold if M is flat. In the same year, Tachibana and Oku-

mura [9] showed that the tangent bundle space TM of any non-flat Riemannian

space M always admits an almost Kählerian structure, which is not Kählerian.

Tashiro [11] introduced a contact metric structure on the unit tangent sphere

bundle T1M and prove that contact metric structure on T1M is K-contact if

and only if M has constant curvature 1, in which case the structure is Sasakian.

Kowalski [5] computed the curvature tensor of Sasaki metric. Thus, on

T1M, R(X,Y )ξ can be computed by the formulas for the curvature of TM .

In [1], Blair et al. introduced (κ, µ)-contact Riemannian manifolds and

proved that, the tangent sphere bundle T1M is a (κ, µ)-contact Riemannian

manifold if and only if the base manifold M is of constant sectional curvature

c.

In [10], Takahashi introduced contact pseudo-metric structures (η, g), where

η is a contact one-form and g a pseudo-Riemannian metric associated to it.

These structures are a natural generalization of contact metric structures. Re-

cently, contact pseudo-metric manifolds have been studied by Calvaruso and

Perrone [2, 6] and authors of this paper [4] introduced and studied (κ, µ)-contact

pseudo-metric manifolds.

In this paper, we suppose that (M, g) is pseudo-metric manifold and define

pseudo-metric on TM . Also, we introduce contact pseudo-metric structures

(ϕ, ξ, η,G) on TεM and prove that

R̄(X,Y )ξ = c(2ε− c)
{
η(Y )X − η(X)Y

}
− 2c

{
η(Y )hX − η(X)hY

}
if and only if the base manifold M is of constant sectional curvature. That

is, the tangent sphere bundle TεM is a (κ, µ)-contact pseudo-metric manifold

iff the base manifold M is of constant sectional curvature c. Also, the contact

pseudo-metric structure (ϕ, ξ, η,G) on TεM is K-contact if and only if the base

manifold (M, g) has constant curvature ε.

2. Preliminaries

Let (M, g) be a pseudo-metric manifold, ∇ the associated Levi-Civita con-

nection and R = [∇,∇] − ∇[,] the curvature tensor. The tangent bundle of

M , denoted by TM , consists of pairs (x, u), where x ∈ M and u ∈ TxM ,(i.e.,

TM = ∪x∈MTxM). The mapping π : TM → M,π(x, u) = x is the natural

projection and for all (x, u) ∈ TM , the connection map K : TTM → TM is

given by K(X∗u) = ∇uX, where X : M → TM is a vector field on M [3].

The tangent space T(x,u)TM splits into the vertical subspace V TM(x,u) and

the horizontal subspace HTM(x,u) are given by V TM(x,u) := kerπ∗|(x,u) and

HTM(x,u) := kerK|(x,u) :

T(x,u)TM = V TM(x,u) ⊕HTM(x,u).
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For every X ∈ TxM , there is a unique vector Xh ∈ HTM(x,u), such that

π∗(X
h) = X.

It is called the horizontal lift of X to (x, u). Also, there is a unique vector

Xv ∈ V TM(x,u), such that

Xv(df) = Xf,∀f ∈ C∞(M).

Xv is called the vertical lift of X to (x, u). The maps X 7→ Xh between TxM

and HTM(x,u), and X 7→ Xv between TxM and V TM(x,u) are isomorphisms.

Hence, every tangent vector Z̄ ∈ T(x,u)TM can be decomposed Z̄ = Xh + Y v

for uniquely determined vectors X,Y ∈ TxM . The horizontal ( respectively,

vertical) lift of a vector field X on M to TM is the vector field Xh (respectively,

Xv ) on M , whose value at the point (x, u) is the horizontal (respectively,

vertical) lift of Xx to (x, u).

A system of local coordinate (x1, . . . , xn) on an open subset U of M in-

duces on π−1(U) of TM a system of local coordinate (x̄1, . . . , x̄n;u1, . . . , un)

as follows:

x̄i(x, u) = (xi ◦ π)(x, u) = xi(x),

ui(x, u) = dxi(u) = uxi

for i = 1, . . . , n and (x, u) ∈ π−1(U). With respect to the induced local coor-

dinate system, the horizontal and vertical lifts of a vector field X = Xi ∂
∂xi on

U are given by

Xh = (Xi ◦ π)
∂

∂x̄i
− ub((XaΓiab) ◦ π)

∂

∂ui
, (2.1)

Xv = (Xi ◦ π)
∂

∂ui
, (2.2)

where Γijk are the local components of ∇, i.e.,

∇ ∂

∂xj

∂

∂xk
= Γijk

∂

∂xi
.

From (2.1) and (2.2), one can easily calculate the brackets of vertical and

horizontal lifts:

[Xh, Y h] = [X,Y ]h − v{R(X,Y )u}, (2.3)

[Xh, Y v] = (∇XY )v, (2.4)

[Xv, Y v] = 0, (2.5)

for all X,Y ∈ Γ(TM). We use some notation, due to M. Sekizawa ([8]). Let T

be a tensor field of type (1, s) on M and X1, . . . , Xs−1 ∈ Γ(TM), the vertical

vector field v
{
T (X1, . . . , u, . . . ,Xs−1)

}
on π−1(U) is given by

v{T (X1, . . . , u, . . . ,Xs−1)} := ua(T (X1, . . . ,
∂

∂xa
, . . . , Xs−1))v.
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Analogously, one defines the horizontal vector field h{T (X1, . . . , u, . . . ,Xs−1)}
and h{T (X1, . . . , u, . . . , u, . . . , Xs−2)} and the vertical vector field v{T (X1, . . .

, u, . . . , u, . . . , Xs−2)}. Note that these vector fields do not depend on the choice

of coordinates on U .

If f is a smooth function on M and X is a vector field on M , then

Xh(f ◦ π) = (Xf) ◦ π,
Xv(f ◦ π) = 0.

(2.6)

In particular, we write X = Xi ∂
∂xi on U , and then we have

Xh(x̄i) = Xi ◦ π,

Xv(x̄i) = 0.
(2.7)

Further, from (2.1) and (2.2), we have

Xh(ui) = −ub(XaΓiab) ◦ π,

Xv(ui) = Xi ◦ π.
(2.8)

Let (M, g) be a pseudo-metric manifold. On the tangent bundle TM , we can

define a pseudo-metric g̃ to be

g̃(Xh, Y h) = g̃(Xv, Y v) = g(X,Y ) ◦ π,

g̃(Xh, Y v) = 0
(2.9)

for all X,Y ∈ Γ(TM). We call it Sasaki pseudo-metric. According (2.9), If

{E1, . . . , En} is an orthonormal frame field on U then {Ev1 , . . . , Evn, Eh1 , . . . , Ehn}
is an orthonormal frame field on π−1(U). So, we have the following:

Proposition 2.1. If the index of g is ν then the index of the Sasaki pseudo-

metric g̃ is 2ν.

Let ∇̃ be the Levi-Civita connection of g̃. It is easy to check that for X,Y ∈
Γ(TM) and (x, u) ∈ TM(see [5] for more details):

∇̃XvY v = 0,

∇̃XvY h =
1

2
h
{
R(u,X)Y

}
,

∇̃XhY v = (∇XY )v +
1

2
h
{
R(u, Y )X

}
,

∇̃XhY h = (∇XY )h − 1

2
v
{
R(X,Y )u

}
.

(2.10)

3. The curvature of the unit tangent sphere bundle with pseudo-

metric

Let (TM, g̃) be the tangent bundle of (M, g) endowed with its Sasaki pseudo-

metric. We consider the hypersurface TεM =
{

(x, u) ∈ TM |gx(u, u) = ε
}

,
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which we call the unit tangent sphere bundle. A unit normal vector field N on

TεM is the (vertical) vector field

N = ui
∂

∂ui
= ui(

∂

∂xi
)v.

N is independent of the choice of local coordinates and it is defined globally on

TM . We introduce some more notation. If X ∈ TxM , we define the tangential

lift of X to (x, u) ∈ TεM by

Xt
(x,u) = Xv

(x,u) − εg(X,u)N(x,u). (3.1)

Clearly, the tangent space to TεM at (x, u) is spanned by vectors of the form

Xh and Xt, where X ∈ TxM . Note that ut(x,u) = 0. The tangential lift of a

vector field X on M to TεM is the vertical vector field Xt on TεM , whose value

at the point (x, u) ∈ TεM is the tangential lift of Xx to (x, u). For a tensor field

T of type (1, s) on M and X1, . . . , Xs−1 ∈ Γ(TM), we define the vertical vector

fields t{T (X1, . . . , u, . . . ,Xs−1)} and t{T (X1, . . . , u, . . . , u, . . . , Xs−2)} on TεM

in the obvious way.

In what follows, we will give explicit expressions for the brackets of vector

fields on TεM involving tangential lifts, the Levi-Civita connection and the

associated curvature tensor of the induced metric ḡ on TεM .

First, for the brackets of vector fields on TεM involving tangential lifts, we

obtain

[Xh, Y t] = (∇XY )t, (3.2)

[Xt, Y t] = εg(X,u)Y t − εg(Y, u)Xt. (3.3)

Next, we denote by ḡ the pseudo-metric induced on TεM from g̃ on TM as

follows:

ḡ(Xh, Y h) = g(X,Y ),

ḡ(Xt, Y t) = g(X,Y )− εg(X,u)g(Y, u),

ḡ(Xh, Y t) = 0

(3.4)

Proposition 3.1. The Levi-Civita connection ∇̄ of (TεM, ḡ) is described com-

pletely by

∇̄XtY t = −εg(Y, u)Xt,

∇̄XtY h =
1

2
h{R(u,X)Y },

∇̄XhY t = (∇XY )t +
1

2
h{R(u, Y )X},

∇̄XhY h = (∇XY )h − 1

2
t{R(X,Y )u}

(3.5)

for all vector fields X and Y on M .
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Proof. This is obtained by an easy calculation using (2.10) and the following

equation

∇̄ĀB̄ = ∇̃ĀB̄ − εg̃(∇̄ĀB̄,N)N,

for vector fields Ā, B̄ tangent to TεM . �

Proposition 3.2. The curvature tensor R̄ of (TεM, ḡ) is described completely

by

R̄(Xt, Y t)Zt = ε
(
− ḡ(Xt, Zt)Y t + ḡ(Zt, Y t)Xt

)
, (3.6)

R̄(Xt, Y t)Zh = (R(X,Y )Z)h − ε
(
g(Y, u)h(R(X,u)Z) + g(X,u)h(R(u, Y )Z)

)
+

1

4
h
{

[R(u,X), R(u, Y )]Z
}
, (3.7)

R̄(Xh, Y t)Zt = −1

2
(R(Y,Z)X)h +

ε

2

(
g(Y, u)h(R(u, Z)X) + g(Z, u)h(R(Y, u)X)

)
−1

4
h
{
R(u, Y )R(u, Z)X

}
, (3.8)

R̄(Xh, Y t)Zh =
1

2

(
R(X,Z)Y

)t
− ε

2
g(Y, u)t

{
R(X,Z)u

}
−1

4
t
{
R(X,R(u, Y )Z)u

}
+

1

2
h
{

(∇XR)(u, Y )Z
}
, (3.9)

R̄(Xh, Y h)Zt =
(
R(X,Y )Z

)t
− εg(Z, u)t

{
R(X,Y )u

}
+

1

4
t
{
R(Y,R(u, Z)X)u−R(X,R(u, Z)Y )u

}
+

1

2
h
{

(∇XR)(u, Z)Y − (∇YR)(u, Z)X
}
, (3.10)

R̄(Xh, Y h)Zh =
(
R(X,Y )Z

)h
+

1

2
h
{
R(u,R(X,Y )u)Z

}
−1

4
h
{
R(u,R(Y, Z)u)X −R(u,R(X,Z)u)Y

}
+

1

2
t
{

(∇ZR)(X,Y )u
}

(3.11)

for all vector fields X,Y and Z on M .

Proof. The proof is made by using the following equation and equation (3.5)

for the covariant derivative, (2.3), (3.2) and (3.3) for the brackets are explicitly

calculated.

R̄(Ā, B̄)C̄ = ∇̄Ā∇̄B̄C̄ − ∇̄B̄∇̄ĀC̄ − ∇̄[Ā,B̄]C̄.

�

4. The contact pseudo-metric structure of the unit tangent sphere

bundle

First, we give some basic facts on contact pseudo-metric structures. A

pseudo-Riemannian manifold (M2n+1, g) has a contact pseudo-metric structure
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if it admits a vector field ξ, a one-form η and a (1, 1)-tensor field ϕ satisfying

η(ξ) = 1,

ϕ2(X) = −X + η(X)ξ,

g(ϕX,ϕY ) = g(X,Y )− εη(X)η(Y ),

dη(X,Y ) = g(X,ϕY ),

(4.1)

where ε = ±1 and X,Y ∈ Γ(TM). In this case, (M,ϕ, ξ, η, g) is called a contact

pseudo-metric manifold. In particular, the above conditions imply that the

characteristic curves, i.e., the integral curves of the characteristic vector field

ξ, are geodesics.

If ξ is in addition a Killing vector field with respect to g, then the manifold

is said to be a K-contact (pseudo-metric) manifold. Another characterizing

property of such contact pseudo-metric manifolds is the following:

geodesics which are orthogonal to ξ at one point, always remain orthogonal to

ξ. This yields a second special class of geodesics, the ϕ-geodesics.

Next, if (M2n+1, ϕ, ξ, η, g) is a contact pseudo-metric manifold satisfying the

additional condition Nϕ(X,Y ) + 2dη(X,Y )ξ = 0 is said to be Sasakian, where

Nϕ(X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ]

is the Nijenhuis torsion tensor of ϕ.

A contact pseudo-metric structure is a Sasakian structure if and only if R

satisfies

R(X,Y )ξ = η(Y )X − η(X)Y, (4.2)

In particular, one can show that the characteristic vector field ξ is a Killing

vector field. Hence, a Sasakian manifold is also a K-contact manifold. In a

contact pseudo-metric manifold M2n+1(ϕ, ξ, η, g), defined the (1, 1)-tensor field

h by

hX =
1

2
(Lξϕ)(X),

where L denotes the Lie derivative. The tensors h is self-adjoint operator

satisfying([2, 6])

hϕ = −ϕh, (4.3)

hξ = 0, (4.4)

∇Xξ = −εϕX − ϕhX. (4.5)

(see [2, 6] for more details). If a contact pseudo-metric manifold satisfying

R(X,Y )ξ = εκ
(
η(Y )X − η(X)Y

)
+ εµ

(
η(Y )hX − η(X)hY

)
,

we call (κ, µ)-contact pseudo-metric manifold, where (κ, µ) ∈ R2. the (κ, µ)-

contact pseudo-metric manifold is Sasakian iff κ = ε and hence h= 0, by (4.2).

(see [4] for more details).
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Take now an arbitrary pseudo-metric manifold (M, g). One can easily define

an almost complex structure J on TM in the following way:

JXh = Xv, JXv = −Xh (4.6)

for all vector fields X on M . From (2.3), (2.4) and (2.5), we have the almost

complex structure J is integrable if and only if (M, g) is flat. From the defini-

tion (2.9) of the pseudo-metric g̃ on TM , it follows immediately that (TM, g̃, J)

is almost Hermitian. Moreover, J defines an almost Kählerian structure. It is

a Kähler manifold only when (M, g) is flat[3].

Next, we consider the unit tangent sphere bundle (TεM, ḡ), which is isometri-

cally embedded as a hypersurface in (TM, g̃) with unit normal field N . Using

the almost complex structure J on TM , we define a unit vector field ξ′, a

one-form η′ and a (1, 1)-tensor field ϕ′ on TεM by

ξ′ = −JN, JX = ϕ′X + η′(X)N. (4.7)

In local coordinates, ξ′, η′ and ϕ′ are described by

ξ′ = ui
( ∂

∂xi

)h
,

η′(Xt) = 0, η′(Xh) = εg(X,u),

ϕ′(Xt) = −Xh + εg(X,u)ξ′,

ϕ′(Xh) = Xt,

(4.8)

where X,Y ∈ Γ(TM). It is easily checked that these tensors satisfy the con-

ditions (4.1) excepts or the last one, where we find εḡ(X,ϕ′Y ) = 2dη′(X,Y ).

So strictly speaking, (ϕ′, ξ′, η′, ḡ) is not a contact pseudo-metric structure. Of

course, the difficulty is easily rectified and

η =
1

2
η′, ξ = 2ξ′, ϕ = εϕ′, G =

1

4
ḡ

is taken as the standard contact pseudo-metric structure on TεM . In local

coordinates, with respect to induce the local coordinates (xi, ui) on TM , the

characteristic vector field is given by

ξ(x,u) = 2ui
( ∂

∂xi

)h
= 2uh.

By using (3.2) and (3.3), we have

LξX
h = 2

(
ui[

∂

∂xi
, X]h − v{R(u,X)u}+ ubXaΓiab(

∂

∂xi
)h
)
,

LξX
t = 2

(
(∇uX)t −Xh + εg(X,u)uh

)
.

(4.9)

Before beginning our theorems, we explicitly obtain the covariant derivatives

of ξ. For a horizontal tangent vector field, we may use a horizontal lift again.

Then

∇̄Xhξ = ∇̃Xhξ = −v
{
R(X,u)u

}
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and hence for any horizontal vector Xh at (x, u) ∈ TεM , we have

∇̄Xhξ = −v{R(X,u)u} = −t{R(X,u)u}.

For a vertical vector field Xv tangent to TεM , we have

∇̄Xvξ = ∇̃Xvξ = −2εϕXv − h{R(X,u)u}.

Since J( ∂
∂xi )h = ( ∂

∂xi )v, or in terms of tangential lifts of a vector X on M ,

∇̄Xtξ = −2εϕXt − h{R(X,u)u}.

Comparing with ∇̄Xξ = −εϕX − ϕhX on TεM for a vertical vector V and a

horizontal vector X orthogonal to ξ, hV and hX are given by

hV = εV − εv{R(KV, u)u} and hX = −εX + εh{R(π∗X,u)u}. (4.10)

Theorem 4.1. The tangent sphere bundle TεM is (κ, µ)-contact pseudo-metric

manifold if and only if the base manifold M is of constant sectional curvature

c and κ = εc(2ε− c), µ = −2εc.

Proof. Assume that the manifold M is a pseudo-metric manifold of constant

curvature c. Then from equations (3.6-3.11), for X,Y orthogonal to ξ, we have

R̄(X,Y )ξ = 0 and for a vertical vector V , we get R̄(V, ξ)ξ = c2V and also,

for a horizontal vector X orthogonal to ξ, we obtain R̄(X, ξ)ξ = (4εc− 3c2)X.

Moreover, from equations (4.10),

hV = (ε− c)V and hX = (c− ε)X. (4.11)

Thus for all X,Y on TεM , the curvature tensor on TεM satisfies

R̄(X,Y )ξ = c(2ε− c)
(
η(Y )X − η(X)Y

)
− 2c

(
η(Y )hX − η(X)hY

)
. (4.12)

Conversely, if the contact pseudo-metric structure on TεM satisfies the condi-

tion

R̄(X,Y )ξ = εκ
(
η(Y )X − η(X)Y

)
+ εµ

(
η(Y )hX − η(X)hY

)
,

then

R̄(X, ξ)ξ = εκX + εµhX, (4.13)

for any X orthogonal to ξ. Now, for a vector u on M , that g(u, u) = ε define a

symmetric the Jacobi operator with respect to u, that is, ψu : 〈u〉⊥ → 〈u〉⊥ by

ψuX = R(X,u)u.

By placing the equation (4.10) in (4.13), we get

R̄(V, ξ)ξ = (εκ+ µ)V − µ v{ψuKV }. (4.14)

Also using equations (3.6-3.11), we have

R̄(V, ξ)ξ = −v
{
R(R(u,KV )u, u)u

}
= v
{
ψ2
uKV

}
. (4.15)
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From a comparison of equations (4.14) and (4.15), the operator ψu satisfies the

equation

ψ2
u + µψu − (εκ+ µ)I = 0. (4.16)

In a similar way, for a horizontal X orthogonal to ξ,

R̄(X, ξ)ξ = (εκ− µ)X + µh{ψuπ∗X}, (4.17)

and, from equations (3.6-3.11), we obtain

R̄(X, ξ)ξ = h
{

4ψuπ∗X − 3ψ2
uπ∗X

}
, (4.18)

From a comparison of equations (4.17) and (4.18), we have

3ψ2
u + (µ− 4)ψu + (εκ− µ)I = 0. (4.19)

Since ψu is symmetric operator, then the eigenvalues a of ψu are real numbers

and satisfy the quadratic equations

a2 + µa− (εκ+ µ) = 0, (4.20)

a2 +
µ− 4

3
a+

εκ− µ
3

= 0. (4.21)

According to the equations (4.16) and (4.19), the minimal polynomial of ψu
divides the quadratic equations (4.20) and (4.21). Hence, the minimal poly-

nomial of ψu has degree at most 2. If the minimal polynomial of ψu is of

degree two, then ψu has two eigenvalues, therefore, µ = −2 and κ = ε. Thus

a2 + µa − (εκ + µ) = (a − 1)2 = 0 that is, a = 1. If the minimal polynomial

of ψu is of degree one, then a is the only eigenvalue of ψu. Anyway, a = −µ2 .

Hence, we have

ψuX = R(X,u)u = −µ
2
X.

We suppose that g(X,X) = 1 and X orthogonal to u. Then

K(X,u) =
g(R(X,u)u,X)

g(u, u)g(X,X)− g(X,u)2
= −εµ

2
, (4.22)

where K(X,u) is the sectional curvatures of the nondegenerate plane {X,u}.
Therefore, (M, g) is a space of constant curvature c = −εµ

2
and κ = εc(2ε −

c). �

We now have the following theorem about the K-contact structure.

Theorem 4.2. The contact pseudo-metric structure (ϕ, ξ, η,G) on TεM is K-

contact if and only if the base manifold (M, g) has constant curvature ε, in

which case the structure on TεM is Sasakian.

Proof. We assume that the contact pseudo-metric structure (ϕ, ξ, η,G) on TεM

is K-contact. In this case, ξ is Killing vector field and equivalently h= 0. By
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using (4.10), for all (x, u) ∈ TεM and for horizontal lift Xh of X orthogonal to

u, we have

R(X,u)u = X. (4.23)

We suppose that g(X,X) = 1. Then

K(X,u) =
g(R(X,u)u,X)

g(u, u)g(X,X)− g(X,u)2
= ε. (4.24)

Therefore, (M, g) is a space of constant curvature ε. Conversely, if M has

constant curvature c = ε, by using (4.12), we have κ = ε, then TεM is a

Sasakian manifold. Hence M is K-contact. �
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