1. E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris. The Basic Results of the BrillNoether Theory, Geometry of Algebraic Curves, 133 (3) (1985), 203{224.
2. A. Arnth-Jensen and E. V. Flynn, Non-trivial in the Jacobian of an infinite family of curves of genus 2, Journal de th´eorie des nombres de Bordeaux, 21 (1) (2009), 1-13.
3. A. Borel and J. P. Serre, Le th´eor´eme de Riemann-Roch, Bultin de la Soci´et´e math´ematiques de france, 86 (1958), 97-136.
4. N. Bruin and E. V. Flynn, Exhibiting SHA [2] on hyperelliptic Jacobians, Journal of Number Theory, 118 (2) (2006), 266-291.
5. M. Coppens and G. Martens, Secant spaces and Clifford’s theorem, Compositio Mathematica, 78 (2) (1991), 193-212.
6. M. Fall, M. M. D.Diallo and C. M. Coly, Algebraic Points of any Given Degree on the Affine Curves y2 = x(x + 2p)(x + 4p)(x2 - 8p2), Journal of Contemporary Applied Mathematics, 13 (1) (2023), 11-23.
7. G. Faltings, Finiteness Theorems for Abelian Varieties over Number Fields, Arithmetic Geometry, 1986.
8. P. A. Griffiths, Introduction to algebraic curves: Translations of mathematical monographs, American Mathematical Society, Providence, RI, 76 (1989).
9. M. Gromov and M. A. Shubin, The Riemann-Roch theorem for elliptic operators, IM Gelfand Seminar part, 1 (1993).
10. M. M. D. Diallo, Explicit family of algebraic points of given degree of the curve family Cq, Journal of Advanced Mathematical Studies, 17 (4) (2024), 444-450.
11. P. Vojta, Siegel’s theorem in the compact case, Annals of Mathematics, 133 (3) (1991),509-548.