
Journal of Finsler Geometry and its Applications

Vol. 6, No. 1 (2025), pp 83-91

https://doi.org/10.22098/jfga.2025.16876.1147

Describing families of algebraic points of given degree on a
hyperelliptic curve

Mohamadou Mor Diogou Dialloa∗ ID

aDepartment of Mathematics, Assane Seck University of Ziguinchor

Ziguinchor, Senegal.

E-mail: m.diallo1836@gmail.com

Abstract. In this paper, we give a parametrization of the set of algebraic

points of degree at most ` over Q on the hyperelliptic curve

y2 = x(x2 + x− 4)(x2 − x+ 45).

This curve was studied by Bruin and Flynn in [4] where the heights explicitly

described the set of rational points, i.e. C(1)(Q). Drawing on the work of Arnth-

Jensen and Flynn based on [2] and one of Abel-Jacobi’s fundamental theorems

in [1, 8], we extend the results of [4] to algebraic points of given degree which

we denote C(`)(Q).

Keywords: Mordell-Weill group, Rational Points, Divisors and Linear Sys-

tems, Jacobian, Special algebraic curves and curves of low genus.

1. Introduction

Let C be a smooth projective plane curve defined over Q. For all algebraic

extension field K of Q, we denote by C(K) the set of K-rational points of C on

K and by C(`)(Q) the set of algebraic points of degree ` over Q i.e

C(`)(Q) =
⋃

[Q(R):Q]≤`

C(K).
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The degree of an algebraic point R is the degree of its field of definition on

Q i.e deg(R) = [Q(R) : Q]. One of the most important problems in algebraic

geometry is to determine the set of algebraic points of degree d over Q on a

curve C. At present, there is no general method to determine the set C(`)(Q).

In the case g ≥ 2, Faltings proved Mordell’s conjecture in 1982 that the set

C(K) is finite [7] and this proof was completed a few years later by P. Vojta

[11]. But these proofs are ineffective in the sense that they only give an upper

bound on the number of rational points. In special case where the rank of

the curve is null, we can determine for certain smooth plane curves the set of

algebraic points of degree at most ` over Q by using Abel Jacobi’s theorem and

the Riemann Roch spaces [9]. It’s proof in [4] that the curve C has rank null

and genus 2. However, we also note that the authors proved in [4] the following

result: the set of rational points C on Q denoted C(1)(Q) is equal to {(0, 0),∞}.
In this article, we generalise this result by giving a parametrisation of the

set of algebraic points C(`)(Q) on the hyperelliptic curve C of affine equation

y2 = x(x2 + x− 4)(x2 − x+ 45) described [4].

2. Main Result

Our main result is the following theorem:

Theorem 2.1. The set of algebraic points of degree at most ` over Q on the

curve C is given by C(`) (Q) =

1⋃
k=0

(
Mk

⋃(
1⋃

τ=0

Dk,τ

))
, with :

Mk =



x, −
`+k
2∑
i=k

aix
i

`+k−5
2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

ai, bj ∈ Q∗, a `+k
2
6= 0 if ` is even,

b `+k−5
2
6= 0 if ` is odd and x is a

solution of the equation: `+k
2∑
i=k

aix
i− k2

2

= x1−k

 `+k−5
2∑
j=0

bjx
j

2
2∏

ν=1

(x− ζν)

4∏
µ=3

(x− ζµ)



Dk,τ =



x, −
`+2
2∑
i=1

ai
(
xi + ψik,τ

)
`−3
2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

ψik,τ = −1

2

2∑
τ=1

(
1 + (−1)τ ık

√
17 + 162k

2

)i
ai, bj ∈ Q∗, a `+2

2
6= 0 if ` is even,

b `−3
2
6= 0 if ` is odd, and x is a root

of the equation: `+2
2∑
i=1

ai

(
xi + ψik,τ

x

)2

=

 `−3
2∑
j=0

bjx
j− 1

2

2
2∏

ν=1

(x− ζν)

4∏
µ=3

(x− ζµ)


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3. Auxiliary Results

Definition 3.1. For a divisor D ∈ Div(C), we define the Q-vector space de-

noted L(D) by:

L(D) := {f ∈ K(C)\ {0} | div(f) ≥ −D} ∪ {0}.

Lemma 3.2. According to [2], we have: J (Q) ∼= Z/2Z× Z/2Z.

Proof. The proof of this lemma can be found in [2]. �

Consider the affine expression for curve C given by:

y2 = x

2∏
ν=1

(x− ζν)

4∏
µ=3

(x− ζµ), (3.1)

with ζµ =
(
−1+(−1)ν

√
17

2

)
, ζν =

(
1+(−1)µı

√
179

2

)
and ı2 = −1.

Let x =
X

Z
and y =

Y

Z
be rational functions defined on Q. The projective

equation of the curve deducted by (3.1) is given by:

Z3Y 2 = X

2∏
ν=1

(X − ζνZ)

4∏
µ=3

(X − ζµZ). (3.2)

From the equation (3.2), we define the projective points P0, Pν , Pµ and ∞ of

C by: P0 = [0 : 0 : 1], Pν = [ζν : 0 : 1], Pµ = [ζµ : 0 : 1] and ∞ = [0 : 1 : 0].

Lemma 3.3. For the curve C : y2 = x

2∏
ν=1

(x− ζν)

4∏
µ=3

(x− ζµ), we have:

i: div(x− ζk) = 2Pk − 2∞ with k ∈ {0, . . . , 4},

ii: div(y) =

4∑
k=0

Pk − 5∞.

Proof. see [6]. �

Definition 3.4. Let P be an element of C. We then define the application j

associating P with the class [P −∞] by the Jacobian fold of C onto J (Q):

j : C −→ J (Q)

P 7−→ [P −∞]
(3.3)

Corollary 3.5. The following results are the consequences of the Lemma 3.3

a:

4∑
k=0

j(Pk) = 0,

b: 2j(Pk) = 0 where k ∈ {0, . . . , 4}.

Proof. There are direct consequences of Lemma 3.3 associating the Jacobian

plunge expression (3.3). �
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Thus, The j(Pk) with k ∈ {0, . . . , 4} generate the same subgroup J (Q).

Remark 3.6. The generator of the torsion group of rational points on the

Jacobian J (Q)tor described in [2] is given by:

J (Q)tor '

〈
[P0 −∞] ,

[
2∑

ν=1

Pν − 2∞

]〉
.

From Lemma 3.2 and Remark 3.6, we deduce the following lemma.

Lemma 3.7. The Mordell-Weil group J (Q) is given by:

J (Q) =

{
αj(P0) + β

2∑
ν=1

j(Pν), with α, β ∈ {0, 1}

}
.

Lemma 3.8. A Q-base of L(m∞) is given by:

Bm =
{
xi
∣∣∣ i ∈ N and i ≤ m

2

} ⋃ {
yxj

∣∣∣∣ j ∈ N and j ≤ m− 5

2

}
Proof. These follow from Lemma 3.3 in combination with Clifford’s theorem

[5] for 1 ≤ ` ≤ 2g − 2 and with the use of the Riemann-Roch theorem [3] for

` ≥ 2g − 2. For more details, see [10]. �

4. Proof of Theorem

The following proof corresponds to proving our main theorem; the Theorem

2.1

Proof. Let R ∈ C(Q̄) such that [Q(R) : Q] = ` and R /∈ {Pk, ∞} where

k ∈ {0, . . . , 5}. Let’s consider Rn such that n ∈ {1, . . . , `} the Galois conju-

gates of R and let λ =

[∑̀
n=0

Rn − `∞

]
∈ J (Q). From Lemma 3.7, we have

λ = −αj(P0)− β
2∑

ν=1

j(Pν) with α, β ∈ {0, 1}. Note that with the Jacobian

fold expression (3.3), it follows that:[∑̀
n=0

Rn − `∞

]
=

[
(α+ 2β)∞− αP0 − β

2∑
ν=1

Pν

]
. (4.1)

By reducing the classes in the expression (4.1), we obtain the following:[∑̀
n=0

Rn + αP0 + β

2∑
ν=1

Pν − (`+ α+ 2β)∞

]
= 0. (4.2)
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From the nullity of the class (4.2), there exists, according to the Abel-Jacobi

theorem [1, 8], there exists a rational function fα,β(x, y) defined on Q such

that:

div(fα,β) =
∑̀
n=0

Rn + αP0 + β

2∑
ν=1

Pν − (`+ α+ 2β)∞, (4.3)

From the expression (4.3), we deduce that fα,β ∈ L((`+α+2β)∞). Then from

the Lemma 3.8, we deduce that:

fα,β(x, y) =

`+α+2β
2∑
i=0

aix
i +

`+α+2β−5
2∑
j=0

bjyx
j , (4.4)

with ai, bj ∈ Q and α, β ∈ {0, 1}. Thus, depending on the parameters α and

β, the cases can be grouped into two families.

Case 1 : Let’s first consider the case where the parameters α and β belong to

the family {(0, 0), (1, 0)};

• If (α, β) = (0, 0), then equation (4.4) becomes:

fα,β(x, y) =

`
2∑
i=0

aix
i +

`−5
2∑
j=0

bjyx
j , (4.5)

with ai, bj ∈ Q∗ (otherwise of the Rn’s should be equal to P0, which

would be absurd), a `
2
6= 0 and b `−5

2
6= 0 depending on whether ` is even

or odd (otherwise one of the Rn’s should be equal to ∞, which would

be absurd).

• If (α, β) = (1, 0), then equation (4.4) becomes:

fα,β(x, y) =

`+1
2∑
i=0

aix
i +

`−4
2∑
j=0

biyx
j , (4.6)

and since ordP0
fα,β = 1, which implies that a0 = 0, so we obtain

fα,β(x, y) =

`+1
2∑
i=1

aix
i +

`−4
2∑
j=0

bjyx
j , (4.7)

with aii≥1
, bj ∈ Q∗ (otherwise of the Rn’s should be at P0, which

would be absurd), a `+1
2
6= 0 and b `−4

2
6= 0 depending on whether ` is

even or odd (otherwise one of the Rn’s should be at ∞, which would

be absurd).

Thus, for any pair of parameters (α, β), belonging to the set {(0, 0), (1, 0)}, of

the combination of equations (4.5) and (4.7), we deduce the expression of fk
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as a function of the parameter k with k ∈ {0, 1} as follows:

fk(x, y) =

`+k
2∑
i=k

aix
i +

`+k−5
2∑
j=0

bjyx
j . (4.8)

At the points Rn, which are zeros of fk in the expression (4.7), we have

fk(x, y) = 0, which allows us to express y as a function of x as follows:

y = −

`+k
2∑
i=k

aix
i

`+k−5
2∑
j=0

bjx
j

. (4.9)

By replacing the expression for y of (4.9) in the equation (3.1), we obtain: `+k
2∑
i=k

aix
i

2

= x

 `+k−5
2∑
j=0

bjx
j

2
2∏

ν=1

(x− ζν)

4∏
µ=3

(x− ζµ). (4.10)

Since the equation (4.10) is not of degree `, we deduce the following equation:

 `+k
2∑
i=k

aix
i− k2

2

= x1−k

 `+k−5
2∑
j=0

bjx
j

2
2∏

ν=1

(x− ζν)

4∏
µ=3

(x− ζµ). (4.11)

The degree of the equation (4.11) is `. Indeed, the first member is of degree

2

(
`+ k

2
− k

2

)
= ` and the second member is of degree 2

(
`+ k − 5

2

)
−5+k =

`. This gives a third family of points of degree `:

Mk =



x, −
`+k
2∑
i=k

aix
i

`+k−5
2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

ai, bj ∈ Q∗, a `+k
2
6= 0 if ` is even,

b `+k−5
2
6= 0 if ` is odd and x is a

solution of the equation: `+k
2∑
i=k

aix
i− k2

2

= x1−k

 `+k−5
2∑
j=0

bjx
j

2
2∏

ν=1

(x− ζν)

4∏
µ=3

(x− ζµ)


Case 2 : Let’s now consider the case where the parameters α and β belong to

the family {(0, 1), (1, 1)};
• If (α, β) = (0, 1), then equation (4.4) becomes:

fα,β(x, y) =

`+2
2∑
i=0

aix
i +

`−3
2∑
j=0

bjyx
j , (4.12)
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and since ordP1
fα,β = ordP2

fα,β = 1, which implies that

a0 =

`+2
2∑
i=1

aiψ
i
0

with

ψi0 = −1

2

2∑
ν=1

(
−1 + (−1)ν

√
17

2

)i
,

so the equation (4.12) becomes:

fα,β(x, y) =

`+2
2∑
i=1

ai
(
xi + ψi0

)
+

`−3
2∑
j=0

bjyx
j , (4.13)

with a `+2
2
6= 0 and b `−3

2
6= 0 depending on whether ` is even or odd

(otherwise one of the Rn’s should be at ∞, which would be absurd).

• If (α, β) = (1, 1), from Corollary 3.5 we have

div(fα,β) =
∑̀
n=0

Rn +

4∑
µ=3

Pµ − (`+ 2)∞. (4.14)

From this new expression for the rational divisor of (4.14), we deduce

that fα,β ∈ L((`+ 2)∞), which, according to the Lemma 3.8, induces

the transformation of the expression (4.4) becomes as follows:

fα,β(x, y) =

`+2
2∑
i=0

aix
i +

`−3
2∑
j=0

bjyx
j , (4.15)

and since ordP3fα,β = ordP4fα,β = 1, which implies that

a0 =

`+2
2∑
i=1

aiψ
i
1

with

ψi1 = −1

2

4∑
µ=3

(
1 + (−1)µı

√
179

2

)i
,

hence the equation (4.15) becomes:

fα,β(x, y) =

`+2
2∑
i=1

ai
(
xi + ψi1

)
+

`−3
2∑
j=0

bjyx
j , (4.16)

with a `+2
2
6= 0 and b `−3

2
6= 0 depending on whether ` is even or odd

(otherwise one of the Rn’s should be at ∞, which would be absurd).
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Thus, for any pair of parameters (α, β), belonging to the set {(0, 1), (1, 1)}, of

the combination of equations (4.5) and (4.7), we deduce the expression of fk,τ
as a function of the parameters k and τ with k, τ ∈ {0, 1} as follows:

fk,τ (x, y) =

`+2
2∑
i=1

ai
(
xi + ψik,τ

)
+

`−3
2∑
j=0

bjyx
j , (4.17)

with

ψik,τ = −1

2

2∑
τ=1

(
1 + (−1)τ ık

√
17 + 162k

2

)i
.

Similarly, at the points Rn, which are zeros of fk,τ in the expression (4.17), we

have fk,τ (x, y) = 0, which allows us to express y as a function of x as follows:

y = −

`+2
2∑
i=1

ai
(
xi + ψik,τ

)
`−3
2∑
j=0

bjx
j

. (4.18)

By replacing the expression for y of (4.18) in the equation (3.1), we obtain: `+2
2∑
i=1

ai
(
xi + ψik,τ

)2

= x

 `−3
2∑
j=0

bjx
j

2
2∏

ν=1

(x− ζν)

4∏
µ=3

(x− ζµ) . (4.19)

Since the equation (4.19) is not of degree `, we deduce the following equation:

 `+2
2∑
i=1

ai

(
xi + ψik,τ

x

)2

=

 `−3
2∑
j=0

bjx
j− 1

2

2
2∏

ν=1

(x− ζν)

4∏
µ=3

(x− ζµ) . (4.20)

The degree of the equation (4.20) is `. Indeed, the first member is of degree

2

(
`+ 2

2
− 1

)
= ` and the second member is of degree 2

(
`− 3

2
− 1

2

)
+ 4 = `.

This gives a third family of points of degree `:

Dk,τ =



x, −
`+2
2∑
i=1

ai
(
xi + ψik,τ

)
`−3
2∑
j=0

bjx
j



∣∣∣∣∣∣∣∣∣∣∣∣

ψik,τ = −1

2

2∑
τ=1

(
1 + (−1)τ ık

√
17 + 162k

2

)i
ai, bj ∈ Q∗, a `+2

2
6= 0 if ` is even,

b `−3
2
6= 0 if ` is odd, and x is a root

of the equation: `+2
2∑
i=1

ai

(
xi + ψik,τ

x

)2

=

 `−3
2∑
j=0

bjx
j− 1

2

2
2∏

ν=1

(x− ζν)

4∏
µ=3

(x− ζµ)


�
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