Ricci semi-symmetric null hypersurfaces in a Lorentzian space form

Document Type : Original Article

Author

Department of Mathematics, University of Dan Dicko Dankoulodo de Maradi, Niger

Abstract

In this paper, we study Ricci semi-symmetric null hypersurfaces in a Lorentzian space form. We give a necessary and sufficient condition for a screen quas-conformal null hypersurface to be Ricci semi-symmetric. We show that every screen quasi-conformal null hypersurface M of R1m+2 such that rank *Aξ < m is Ricci semi-symmetric. Next, we give a local classification of a Ricc semi-symmetric screen conformal null hypersurface of a Lorentzian space form.

Keywords


 1. C. Atindogbe and K.L. Duggal, Conformal screen on lightlike hypersurfaces, Int. J. of Pure and Applied Math. 11(2004), 421-442.
2. C. Atindogbe, M. M. Harouna and J. Tossa,
Lightlike Hypersurfaces in Lorentzian manifolds with constant screen principal curvatures, Afr. Diaspora J. Math, 16(2) (2014),31-45.
3. C. L. Bejan and K. L. Duggal,
Global lightlike manifolds and harmonicity, Kodai Math.J. 28, (2005), 131-145.
4. B.Y. Chen,
Geometry of Submanifolds, Pure and Applied Mathematics, New York,Dekker (1973).
5. F. Defever,
Ricci-semisymmetric hypersurfaces, Balkan J. of Appl. 5(2000), 81-91.
6. G. de Rham,
Sur la r´eductibilit´e d’un espace de Riemann, Comment. Math. Helv.268(1952) 328-344.
7. K.L. Duggal, and A. Bejancu,
Lightlike submanifolds of semi-Riemannian Manifolds and Applications, Kluwer Acad. Publishers, Dordrecht, volume 364, 1996.
8. K. L. Duggal and Bayram Sahin,
Differential geometry of lightlike submanifolds, Frontiers in Mathematics. Birkh¨user Verlag, Basel, 2010.
9. K. L. Duggal,
Constant scalar curvature and warped product globally null manifolds, J.Geom. Phys. 43(4) (2002), 327-340.
10. S. W. Hawking and G. F. R. Ellis,
The large scale structure of space-time, Cambridge University Press, London-New York, 1973.
11. M. Navarro, O. Palmas and D.A. Solis,
Null screen quasi-conformal hypersurfaces in semi-Riemannian manifolds and applications. Math. Nachr. 293(8) (2020), 1534-1553.
12. P.J. Rayan,
Homogeneity and some curvature conditions for hypersurfaces, Tohoku Math. J. 2(21) (1969), 363-388.
13. B. O’Neill, Semi-Riemannian geometry, with applications to relativity, volume 103 of Pure and Applied Mathematics. Academic Press, Inc., 1983.
14. B. Sahin,
Lightlike hypersurfaces of semi-Euclidean spaces satisfying curvature conditions of semi-symmetry, Turk J. Math. 31(2007), 139-162.