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Abstract. In this paper, we study Ricci semi-symmetric null hypersurfaces
in a Lorentzian space form. We give a necessary and sufficient condition for
a screen quas-conformal null hypersurface to be Ricci semi-symmetric. We
show that every screen quasi-conformal null hypersurface M of RT“ such

*
that rank A¢< m is Ricci semi-symmetric. Next, we give a local classification
of a Ricc semi-symmetric screen conformal null hypersurface of a Lorentzian
space form.
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1. Introduction

The theory of hypersurfaces, defined as submanifolds of codimension one, is
one of the fundamental theories of submanifolds. As it is known, the main dif-
ference between the geometry of hypersurface in Riemannian manifold and in
semi-Riemannian manifold is that in the latter case the induced metric tensor
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field by the semi-Riemannian metric on the ambient space is not necessarily
non-degenerate. If the induced metric tensor field is degenerate, the classi-
cal theory of Riemannian and semi-Riemannian hypersurfaces fails since the
normal bundle and the tangent bundle of the hypersurface have a non zero

intersection.
The existence of null hypersurfaces is one of the most remarkable features
both in semi-Riemannian geometry and General Relativity [10], [13]. It has

been recently developted a mathematical framework for null submanifold ge-
ometry similar to its classical Riemannian counterpart was developed in [7],[3].

In the present paper, we investigate Ricci semi-symmetric null hypersurfaces
in a Lorentzian space form and is organized as follows. After the Preliminaries
section, in section 3, a necessary and sufficient condition for a screen quasi-
conformal null hypersurface to be Ricci semi-symmetric is obtained. We prove
that every totally umbilical or totally geodesic quasi-conformal null Hypersur-
faces of a (m+2) dimensional Lorentzian space forms are Ricci semi-symmetric.
At the end, we give a local classification of a Ricci semi-symmetric screen con-
formal null hypersurfaces of a Lorentzian space form.

2. Preliminaries

2.1. Null hypersurfaces. Let (M,g) be a (m+2)-dimensional semi-Riemannian
manifold of index v, (0 < v < m + 2). Consider a hypersurface M of M and
denote by ¢ the tensor field induced by g on M. We say that M is a null (degen-
erate, lightlike ) hypersurface if rank(g) = m. Then the normal vector bundle
TM intersects the tangent bundle along a nonzero differentiable distribution
called the radical distribution of M and denoted by Rad(TM):

Rad(TM) : 2 — Rad(T,M) =T,M NT,M=. (2.1)

A screen distribution S(TM) on M is a non-degenerate vector bundle com-
plementary to TM*. A null hypersurface endowed with a specific screen dis-
tribution is denoted by the triple (M, g, S(TM)). As TM~ lies in the tangent
bundle, the following result has an important role in the study of the geometry
of lightlike hypersurfaces.

Theorem 2.1. [7] Let (M, g, S(TM)) be a null hypersurface of (M,g). Then
there exists a unique vector bundle tr(TM) of rank 1 over M, such that for
any non zero section & of TM~* on a coordinate neighborhood U C M, there
exists a unique section N of tr(TM) on U satisfying

g(N,¢) =1and g(N,N)=7g(N,W)=0, (2.2)

for all W € T(S(TM) ).
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With this theorem we may write the following decomposition
TMy = S(TM)L(TM* & tr(TM)) =TM & tr(TM), (2.3)

where 1 denotes an orthogonal direct sum and & a direct sum. Throughout
the paper, we denoted by I'(E) the C°°(M)-module of smooth sections of a
vector bundle E over M, while C*° (M) represents the algebra of a smooth
functions on M. Also, all manifolds are supposed to be smooth, paracompact
and connected.

Let (M,g,S(TM)) be a null hypersurface of a semi-Riemannian manifold
(M,3g), V be the Levi-Civita connection of M, V the induced connection on
(M,g). Gauss and Weingarten formulas provide the following relations (see
details in [7], section 4.2)

VXY = VXerh(X, Y), (2.4)

VxV =-AvX + V4V, (2.5)
for all XY € I'(TM) and V € tr(T'M), where VxY and Ay X belong to
I'(TM) while h is a I'(¢tr(T'M))-valued symmetric C°°(M)-bilinear form on
[(TM) and V! is a linear connection on tr(T'M). It is easy to see that V is
a torsion-free connection. Define a symmetric C°°(M)-bilinear form B and a
1-form 7 on the coordinate neighborhood U C M by

T(X) =g(VXN,¢) (2.7)

for all X,Y € I'(T'Mj;). Then, on U, equations (2.4) and (2.5) become,
VxY =VxY + B(X,Y)N, (2.8)
VxN =-AxyX +7(X)N, (2.9)

respectively. It is important to stress the fact that the local second fundamental
form B in Eq.(2.8) does not depend on the choice of the screen distribution
and satisfies,

B(X,&) =0, (2.10)
for all X € T(T'M|y). Let P be the projection morphism of TM to S(TM)
with respect to the decomposition (2.2). We obtain: for all X, Y € I'(TM) and
Uel(TMY),

VxPY = vy PY+h(X,PY), (2.11)
VxU = — Ay X + ViU, (2.12)

where %X PY and ;1U X belong to T'(S(TM)), v and V' are linear connec-
tions on T'(S(T'M)) and T'(T M) respectively, hisa [(TM~)-valued C*>(M)-
bilinear form on I'(T'M) xT'(S(T'M)), ;lU isaI'(S(T'M))-valued C*°(M)-linear
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operator on I'(S(TM)). h and IZU are the second fundamental form and the
shape operator of the screen distribution S(TM) respectively. Define on U the
following relations

*

C(X,PY) = 3(h(X,PY),N), (2.13)
((X) = g(V'x &N). (2.14)
One shows that
e(X) = —7(X).
Thus, locally (2.11) and (2.12) become
VxPY =Vx PY + C(X,PY)E, (2.15)
Vxé=— A¢ X — r(X)e, (2.16)

*
respectively. The linear connection V is a metric connection on I'(S(TM)).
But, in general, the induced connection V on M is not compatible with the
induced metric g. Indeed, we have:

(Vx9)(Y, Z) = B(X,Y)n(Z) + B(X, Z)n(Y), (2.17)
for all X,Y € I'(T'M|y), where
n(X) =g(X, N), (2.18)
for all Y € T'(T'M|y). Finally, it is straightforward to verify that
B(X,Y) = g(A¢ X,Y), g(ANY,N)=0, (2.19)
C(X,PY) = g(ANXY), Ac€=0, (2.20)

for X, Y e T(TM|y).
We denote the curvature tensor associated with V and V by R and R,
respectively. Then for all X,Y € I'(TM|y), we have ([7]) the following

R(X,Y)Z = R(X,Y)Z+ Anx.z)Y — Any.y X + (Vxh)(Y, 2)

- (Vyh)(X, 2), (2.21)
g(RX.Y)PZ,PW) = g( R(X.Y)PZ PW)+C(X,PZ)B(Y, PW)
_C(Y,PZ)B(X, PW), (2.22)

g(ﬁ(x, Y)e, N) = O(Y, Ae X) — C(X, Ac Y) — 2d7(X,Y). (2.23)
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2.2. Curvature condition of Semi-symmetric type. Let (M,3) be a semi-

Riemannian manifold. We denote its curvature operator by R(X,Y).
R(X,Y)=VxVy —VyVx = Vixy]

for all X,Y € T'(TM), where V denote the Levi-Civita connection on M. Then

the curvature tensor R and the Riemannian curvature tensor R are defined by

R(X,Y)Z =VxVyZ—-VyVxZ-Vxy)Z. (2.24)

R(X,Y,Z,W) =g(R(X,Y)Z,W) (2.25)
For any (0,k)-tensor field on M, k > 1, we define a (0,k + 2)-tensor field
R-T =0by
(ﬁT)<Xl7an7XaY) = 7T(§(X3Y)X13X27"'7Xk)
~T(X1,X2,...,R(X,Y)Xg) (2.26)
for X, Y, X1,..., X € I(TM). Curvature conditions, involving the form R-T |
are called curvature conditions of semi-symmetric type [5]. A semi-Riemannian
manifold M is said to be semi-symmetric if it satisfies the condition R - R = 0.
Thus, from properties of curvature tensor, we have
(R~ R)(U ,V)W=R(X,Y)RU, V)W —R(U,V)R(X, Y)W
- RRX,Y)UV)W - R(U,RX,Y)V)W
- R(UV)R(X, Y)W, (2.27)

for all X,Y,U,V,W € I'(TM).

3. Ricci Semi-symmetric null hypersurfaces in Lorentzian space forms

Let M be a null hypersurface of a semi-Riemannian manifold (M (k),g) of
constant curvature k. We need the following proposition.

Proposition 3.1. [2] Let (M(k),g) be a semi-Riemannian manifold of con-
stant curvature k and M be a null hypersurface of M(k). Denote by R the
curvature tensor of the induced connection V on M by the Levi-civita connec-
tion V. For any X,Y,Z € T(TM), we have:
(a) R(X,Y)Z =k{g(Y,Z)X —g(X,Z2)Y} = B(X, Z)ANY + B(Y, Z)An X ;
(b) (VXB)( Z) = (VyB)(X,Z) = B(X, Z)r(Y) = B(Y, Z)7(X);
(¢c) B(ANY,X) — B(ANX,Y) =2d7(X,Y);
(d) (VyAn)(X) = (VxAN)(Y) + k{n(X)Y —n(Y)X} = 7(Y)ANX —
T(X)ANY;
(&) (Vx A(Y) = (Vy Ae)(X) = 7(Y) A¢ X = 7(X) A Y — 2dr(X,Y)¢;
(f) VxPZ=VxZ X -0(2) +n0(Z) Ae X +n(Z)7(X)E.
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Now, we recall the definition of a screen conformal and screen quasi-conformal
null hypersurface of a semi-Riemannian manifold M of a semi-Riemannian man-
ifold M.

Definition 3.2. ([1]). A null hypersurface (M, g, S(TM)) of a semi-Riemannian
manifold M is said to be locally screen (resp. globally) conformal if on any co-

ordinate neighborhood U (resp. U = M ), the shape operators An and ;15 of M
and its screen distribution S(TM) are related by

AN = ¢ Ag, (3.1)
where @ is a non-vanishing smooth function on U (resp. U = M ).

We remark that ¢ will be connected and maximal in the sense that there is
no larger domain U’ D U on which Eq. (3.1) holds. It is easy to see that Eq.
(3.1) is equivalent to

C(Y, PZ) = ¢B(Y, 2), (3.2)
for all X,Y € T(TM|y).

Definition 3.3. [11] A null hypersurface (M, g, S(TM)) of a semi-Riemannian
manifold is locally screen quasi-conformal if the shape operators Ax and ;15 of

M and S(TM) satisfy
An =@ Ae +0P, (3.3)

in I(T'M), for some functions ¢, 1) and P is the natural projection defined
in section 2.

We note that there are many examples of screen conformal null hypersurfaces
of semi-Riemannian manifolds see [1] and [11].

Next, we say that M is totally umbilical if there exists a smooth function p
such that

B(X,Y) = pg(X.,Y), (3.4)

for all X,Y € I'(T'M), or equivalently,

A¢ X = pPX, (3.5)
for all X € T(T'M).

M is said to be a totally geodesic null hypersurface if the second fundamental
form B = 0 or equivalently ;152 0.

For any null hypersurface M of an (m + 2)-dimensional Lorentzian manifold
(M(k),q) of constant curvature k, it is known that, the induced Ricci tensor
on M is symmetric. Since £ is an eigenvector field of ;15 corresponding to the
eigenvalue 0 and ;15 is D(S(T'M))-valued real symmetric, ;15 has m orthonormal
eigenvector fields in S(T'M) and is diagonalizable. Consider a frame field of

eigenvectors {&, En, ..., Ep,} of ;15 such that {E1,..., Ey,} is an orthonormal
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frame field of S(TM). Then, Ac Ei = ME;, 1< i < m. We call the
eigenvalues \; the screen principal curvatures for all .
We have the following Lemma

Lemma 3.4. Let M be a screen quasi-conformal null hypersurface of a (m+2)
dimensional Lorentzian manifold (M (k),q) of constant curvature k. Then, the
Ricci tensor Ric of M is given by

Ric(X,Y)= — mkg(X,Y)— pg(Ac X,Y)a+pg(Ae X, Ac V)
— mubg(Ae X,Y) + (X, Ac V), (3.6)
where o :tmce;lg,
Proof. From (1) in proposition 3.1, we have
R(X,Y)Z = k{g(Y, 2)X — g(X, Z)Y} — B(X,Z)ANY + B(Y, Z)AnX.

Then, we have by using equation (2.19) and (3.3):

RX,Y)Z = kg(Y,2)X — g(X,2)Y} — og(Ae X, Z) Ac Y
+0g(Ae Y, Z) Ae X — bg(Ae X, Z)PY
+hg(Ae Y, Z)PX. (3.7)

In particular, since A¢ € =0, PE; = E; and P¢ = 0, we have
R(X, Y = —kg(X,Y)¢
RIX,E)Y = k{g(Ei,Y)X - g(X,Y)Ei} — g(Ae X,Y) A¢ E;
+pg(Ae Bi,Y) Ae X —vg(Ae X,Y)E; +vg(Ac i, Y)PX.
We have then
G(R(X,6)Y,N) = —kg(X,Y)=—kg(X,Y). (3.8)
and
g(R(X, E)Y, E;) = Kkg(E,Y)g(X, E;) —g(X,Y)g(E;, E;)}
—pg(Ae X.Y)g(A¢ Er, Ei) + og(A¢ Ei,Y)g(Ae X, Ey)
~Yg(Ae X,Y)g(Ei, i) + ¥g(A¢ Ei,Y)g(PX, Ey)
= {g(9(X. BB, Y) = g(X,Y) | — (A X.Y)
+pg (9(215 X, E)E;, Ag Y) — pg(A¢ X,Y)g(A¢ Ei, E;)

+ wg(g(X, Ei)Eing Y) (3.9)
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The Ricci tensor of a null hypersurface is given by

Ric(X.Y) = 3" (RO E)Y. B) + g(ROLOY.N)  (3.10)
i=1
Then, by using (3.8), (3.9) and (3.10), we get (3.6). O

Definition 3.5. [14] Let M be a null hypersurface of an (m + 2)-dimensional

semi-Riemannian manifold (M (k),g). We say that M is Ricci semi-symmetric

if the following condition is satisfied
(R(X,Y) - Ric)(X1,X3) =0, (3.11)

for all XY, X1, Xo € T'(TM), where Ric is the Ricci tensor of M.

Next, The following general result gives a necessary and sufficient condition
for a quasi-conformal null hypersurface to be Ricci semi-symmetric.

Theorem 3.6. Let M be a screen quasi-conformal null hypersurface of a (m+

2) dimensional Lorentzian manifold (M (k),q) of constant curvature k. Then,
M is Ricci semi-symmetric if and only if for distinct i, 7, the screen principal
curvatures satisfy

PN =) (mk — @A) = (K +oAid;) (i = M) (—pa+pAi + oA j —mp +1p) =0,
(3.12)

where o =traceAs.

Proof. Since {&,E1,...,E,,} a frame field of eigenvectors of ;15 such that

{F1,...,Ep} is an orthonormal frame field of S(T'M). Then ;15 E;, = \E;,
1 <4< m. If i, are distinct, we use (3.7) to get

(3.13)
By using (3.6) and (3.13), we obtain
Ric(R(Ei, E;)E;, Ej): Ric( — R(E;, E))E;, Ej)
:(k + (,0)\2>\] + 1/))\2)(772]{7 + QO)\]'OL - (,0)\?
—I—mw)\J — ¢AJ) (314)
Ric(Ei, R(E;, Ej)Ej):(k oA+ VA (—mk — pAia + pA2
—mYpA; + ;) (3.15)
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Then, by using (3.14) and (3.15), we
(R(E;, E;) - Ric)(E;, E;) = —Ric(R(Ei,Ej)Ei,Ej) - Ric(Ei,R(Ei,Ej)Ej)
—(k+0Aid)(Ai = Aj)(—pa + eAi + pA))
—m’(/l—‘v-’(/J—f—w()\Z —)\j)(mkz—gp)\l)\J) (316)
Thus, if M is Ricci semi-symmetric i.e (R(X,Y) - Ric) = 0, for all X and Y,
we have (3.12).
Conversely, suppose that this condition holds. It is sufficient to verify
(R(E;, E;) - Ric) =0 for i # j. If i, j,r and s are all distinct, then
(R(E;, Ej) - Ric)(Ey, Es) = (R(E;, Ej) - Ric)(Ey, Ey)
(R(Eia EJ) : RZ.C)(ES, Eé)
= 0.

By assumption, (R(E;, E;) - Ric)(E;, E;) = 0. Finally symmetry takes care of
the rest. O

In the case when the screen is conformal, we have:

Corollary 3.7. If M is a screen conformal null hypersurface of a (m + 2)
dimensional Lorentzian manifold (M(k),q) of constant curvature k. Then, M
is Ricci semi-symmetric if and only if for distinct i,j , the screen principal

curvatures satisfy
(k+<,0/\i)\j)()\i —)\j)(—a—i—)\i -‘r)\j) =0, (3.17)

Proof. since ¢ is a non-vanishing smooth function, we get (3.17) by taking
¥ =0. O

Example 3.8. Let (R}, g) be a 4-dimensional semi-Euclidean space with Lorentzian
signature. Consider a Monge hypersurface M of R} given by
1
t=— (ac VY2 + 22) .
NG i

It is easy to check that M is a null hypersurface whose radical distribution
RadT'M is spanned by

Y o, + 5.4+ -19
It is readily checked that, one gets an orthonormal basis {E1, E2} of S(T'M)
given by

§=0+

1
Bl = ———=(—20y+y0,);

1
EW (\/ y2 + 226w — yay — Zaz) € = +.

By =
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Then the null transversal vector bundle is given by

1 Y z 1

-~ + 9y, + 0, + —=0s ¢ .
27t \/g/y2+22y NCN = NG }

By direct computation, we obtain

1 _
_E) and Vi,€ = V& =0, (3.18)

NeN R

Thus, from the Weingarten formula (2.16), we have

tr(TM) = Span{N =

vElf = VE1§ =

* 1 *
Ac By = ——F—=F1, A¢ E2=0 and 7=0.
¢ L NN 1 ¢ Lo
. . . . o 1
Then, M has two distinct screen principal curvatures Ay = RN and
Ao = 0. On the other hand, we have
_ 1 _ _
Vg, N = Ei, Vg,N=0 and V¢N = 0. (3.19)

\/g /yz 422

Then, from the Weingarten formula (2.9), we have

1 =
ANEl = = 5 Af El, ANEQ = 0 and ANf = 0

1
P R
\/g /y2—|—z2 1

Next, any X € T(T'M), is expressed by
X = aEl + ﬁEZ +’7§7

where o, B,y are smooth functions, and then
1 =*
ANX = aANEy + BANE2 +YANE = 5 A X,

that is M is a screen conformal lightlike hypersurface of R} with conformal
factor ¢ = % Thus, M is a screen conformal null hypersurface of Rf. The
two distinct screen principal curvatures satisfy Eq. (3.17), then M s Ricci

semi-symmetric.

Example 3.9. (The null cone A} of R})
Let R} be the space R* endowed with the semi-Euclidean metric

glu,v) = —zx’ +yy' + 22" + tt,
where u = (x,y,2,t) and v = (2',y',2',t'). The null cone A} is given by the
equation —x% + y? + 22 + 2 = 0 with (x,vy,2,t) # (0,0,0,0). It is known that

A} is a lightlike hypersurface of R} and the radical distribution is spanned by a
global vector field

§ =0, +y0y + 20, + 10, (3.20)
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on A}. It is easy to see that, one gets an orthonormal basis { E1, Ea} of S(TA3)

given by
1
t2+y2 2 y
B (150 (0t
2 +y? 2 Yz 2t
Ey, = — Oy +0,+————=0 ).
2 ( 22 12 4 42 y T 0=+ 2 42t

As £ is a position vector field, we get for alli =1,2
Vg &=Vgé=E,.
Using (2.16), we have ;15 E,+7(E){+E; =0. As ;15 is T(S(T'M))-valued
we obtain
Ae By = —E;, (3.21)
for all i = 1,2 This proves that \y = Ao = —1 and 7 = 0. The two distinct

screen principal curvatures satisfy Eq. (5.17). Then, The null cone A3 of R}
is Ricci semi-symmetric.

FIGURE 1. Projection of M in R3 forx = —1, z =0 and x = 1

More generally, we have the following Proposition.

Proposition 3.10. a) Bvery totally umbilical or totally geodesic quasi-
conformal null Hypersurfaces of a (m+2) dimensional Lorentzian space
forms are Ricci semi-symmetric.

b) Every screen quasi-conformal null hypersurface of an (n+2)-dimensional
Lorentzian space R;H'Q, such that at least one screen principal curva-

tures is zero, is Ricci semi-symmetric.
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ZoA

FIGURE 2. The lightcone A} of R} is a stacking of spheres
52 (930) of RB

Proof. a) is evident. b) By using £k = 0 in Eq. (3.12) and assumption that
there exists ig such that A;, = 0, we get the result. O

This proposition shows the existence of a large class of Ricci semi-symmetric
null hypersurface.
We have the following local classification theorem.

Theorem 3.11. Let M be a screen conformal Ricci semi-symmetric null hyper-
surface of (m+2)-dimensional Lorentz manifold (M (k),g) of constant curvature
k, then M is one of the following:

(1) M is a locally null triple product manifolds locally a product of a null
curve (M = C x M' = C x My x M,), where C is a null curve,
My, ‘M, are two totally umbilical spaces forms

(2) M is totally geodesic,

(3) locally M = C' x L x My; where C is a null curve, L is a non-null curve
and My is an (m — 1)-dimensional totally geodesic Euclidean space.

Proof. Since for any screen conformal null hypersurface M of an (m + 2)-
dimensional Lorentzian manifold (M (k), ) of constant curvature k, it is known
that, the screen distribution S(T'M) is Riemannian, integrable and the induced
Ricci tensor on M is symmetric [1].

Then, according to Proposition 3.4 in [7], there exists a canonical null pair
{&, N} satisfying (2.2) such that the corresponding 1-form 7 from (2.9) vanishes.

Since ¢ is an eigenvector field of A¢ corresponding to the eigenvalue 0 and

;15 is T'(S(T'M))-valued real symmetric, A¢ has m orthonormal eigenvector
fields in S(T'M) and is diagonalizable. Consider a frame field of eigenvectors
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{{,E1,...,Ey} of ;15 such that {E1, ..., E,,} is an orthonormal frame field of
S(TM). Then, ;15 E; =)\NFE;, 1<i<m.In the following, we assume 7 = 0.

(1) First, suppose all screen principal curvatures are nonzero i.e rank ;1: m.
We assert that it is impossible for three screen principal curvatures to
be distinct. for this, Consider A,y and p three distinct screen principal
curvatures. Then we have the equations:

(k+ e M)A =p)(—a+A+p) = 0
(k+opy)(p—7)(—a+p+y) = 0
(k+ ey )y =N(—a+v+A) = 0

In order for these to be satisfied, two factors of the same type must
vanish, for example (k + @Au) = (k + ouy) = 0 implies A = v which
gives a contradiction. Thus, there are at most 2 distinct screen prin-
cipal curvatures, say A and u. By [12], the functions A and g have
constant multiplicities and are differentiable along each leaf of S(T'M).
Moreover, the distributions

Ty = {X € D(S(TM))| Ae X = AX}
and
T, = {X € D(S(TM))| ¢ X = pX}
are differentiable distributions.
Let X,Y € I'(Ty), we have [X,Y] = [X,Y], + [X,Y],. Then
(Ae —AD[X,Y] = (Ae —M[X, Y]+ (Ae —M[X, Y],
= A [XY]a+ Ae [X, Y] = AX Y] = AX Y,
A[Xa Y])\ + M[X7 Y]M - A[Xa Yb\ - A[Xa Y]M
= (b=N[X, Y],
Hence, for all X,Y € I'(Ty), (;15 -A)[X,Y] e T(T,).
Since 7 = 0, from (e) in proposition3.1 we have
(Vx Ag)(Y) = (Vy Ag)(X) =0.
Then it follows that if X,Y € T'(Ty),

Ae ([X,Y]) =A¢ (VxY)— A¢ (VyX).
However,

A X =X, AcY =)V
so that

*

Ae ([(X,Y]) =(X-N)Y — (Y- N)X +AX,Y].
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Thus
(Ae —AD)[X,Y] = (X - Y — (Y - M) X.
The left side of the above equation lies in 7}, and the right side in T},
then
(Ae —N[X,Y]=0, (X-NY — (Y - X)X =0

implies that [X,Y] € T\ which prove that T) is integrable. Also, since
(X-NY —(Y-NX =0, if dimTy > 1, we may choose X and Y to be
linearly independent. Thus (X - ) = 0.

If we choose X,Y € I'(T},), by the same argument, we prove that T},
is integrable and (X - ) = 0. Hence, A and p are constant along the
screen distribution.

By lemma 3.4 in [2], if X € T'(T)), and Y € I'(T,,), then VxY €
I'(T,) and Vy X € I'(T») which shows that T and T}, are parallel along
their normals in S(T'M).

From ([1]) a conformal lightlike hypersurface M is locally a product
manifold C' x M’, where C' is a null curve and M’ is a leaf of S(T'M).
Since the leaf M’ of S(T'M) is Riemannian and S(T'M) = T @ortn Ty,
where T and T}, are parallel distributions with respect to the induced

connection v of M’ , by the decomposition theorem of de Rham ([0])
we have M’ = My x M, where My and M, are some leaves of T
and T),, respectively. It follows that M = C x M’ = C x My x M,.
Let X,Y,Z, W € I'(T)). Using (1) in Proposition (3.1) and equations
(2.19) and (3.1) we have

gRX,Y)Z,W) = KgY,Z2)9(X,W) —g(X, Z)g(Y,W)}
— 0g(Ae X, Z)g(Ae Y,W)+pg(Ac Y, Z)g(Ae X, W)
= k{g(Y,Z)g(X, W) —g(X,Z)g(Y, W)}
—pX9(X, Z)g(Y, W) + ¢X2g(Y, Z)g(X, W)
= (k+ go)\2)g(g(Y, 2)X - g(X, 2)Y, W). (3.22)

Again, by using (3.1), (3.2), (2.19), (2.20), (2.22) and (3.22), we
have

(k+@X)g(9(Y, 2)X — (X, 2)Y, W) =

g(R (X.)Z,W) — X2 (g(Y, 2)X — g(X, 2)Y, W),
Then,

R(X,Y)Z = (k+20\){g(Y. 2)X — 9(X, Z)Y},

for all X,Y, Z in I'(T). Thus M, is a Riemannian manifold of constant
curvature (k + 2pA\2).
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As M’ is a Riemannian submanifold of codimension 2 of R}**?,
consider in the normal bundle TM'", the vector fields

2 1 @ L
&+ N & — N
V2ol V2l V2ol V2l
Clearly, {¢1, (2} is an orthonormal basis , where {; and (> are spacelike
and timelike respectively. Then for any X, Y € I'(T'M)), we have

G = nd ¢ =

m-+2
VxY =ViY+ > gi(4aX,Y)E), (3.23)
a=r+1

where gy, V* are the induced metric and the induced connection on
M), respectively, &) are orthonormal normals to TMy in R7"? such

that §m+1 ¢ and £,>;L+2 = (o, Agé are corresponding shape operators
of ¢} In addition,

VxY = VxY+B(X,Y)N

= VxY +g(4e X,Y)N

= Vx Y +C(X,Y)é +g(A¢ X,Y)N

= VUx Y +g(ANX,Y)E+g(Ac X,Y)N
= VxY+ wg(leg X,Y)E+ g(Ae X,Y)N

= VAY + Z ax( XY&’\-l-g(AgXY)(SDf‘FN)
a=r+1

= VAY + Z DALX,Y)E + Ag(X,Y) (€ + N),  (3.24)
a=r+1

where A’ denotes the shape operator of M, with respect to fé in
S(TM). By Theorem ??, M) is totally geodesic in S(TM), and con-
sequently the equation (3.24) can be written as follows:

VxY = VXY 4+ (X,Y)(g+ N)
= VXY +2[p[Aa(X,Y)G. (3.25)
Comparing (3.23) and (3.25), we have
A X =0, Va#m+1
and
Ao X = Aq X = /2[p[AX.
Thus, M) is a totally umbilical submanifold of M (k). Similarly, we can

prove that that M, is a Riemannian manifold of constant curvature
(k + 2pp?) and is a totally geodesic submanifold in M (k).
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(2) Second, suppose that there exists a zero screen principal curvature i.e
rank;<15< m. Then there exists ¢ such that A\; = 0. Thus, from (3.12)
we have \j = a = tr ;15 i.e (¢ —1)A; = 0, where ¢ is the multiplicity
of Aj.

If ¢ # 1, then A\; = 0 for all j. Thus all screen eigenvalues are zero
ie. ;15: 0 which prove that M is totally geodesic.

(3) if ¢ = 1, then the multiplicity of A; is one. So we have two distinct
eigenvalues A = 0 and p # 0. As in (1), we define two distributions

Ty = {X € I(S(TM)) A¢ X =0}
and .
T,={X eT(S(TM)) Ac X = pX}
and we prove that a leaf My of Tp is a totally geodesic (m — 1)-

dimensional Riemannian manifold of zero constant sectional curvature
and the leaf L of T}, is a curve. Thus M is a locally product C'x L x M.

O
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