
Journal of Finsler Geometry and its Applications

Vol. 6, No. 1 (2025), pp 48-64

https://doi.org/10.22098/jfga.2025.15973.1138

Ricci semi-symmetric null hypersurfaces in a Lorentzian
space form

Mahamane Mahi Harounaa∗ ID

aDepartment of Mathematics, University of Dan Dicko Dankoulodo de Maradi

Niger

Email: mahi.harouna@uddm.edu.ne/hmahi2007@gmail.com

Abstract. In this paper, we study Ricci semi-symmetric null hypersurfaces

in a Lorentzian space form. We give a necessary and sufficient condition for

a screen quas-conformal null hypersurface to be Ricci semi-symmetric. We

show that every screen quasi-conformal null hypersurface M of Rm+2
1 such

that rank
∗
Aξ< m is Ricci semi-symmetric. Next, we give a local classification

of a Ricc semi-symmetric screen conformal null hypersurface of a Lorentzian

space form.
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1. Introduction

The theory of hypersurfaces, defined as submanifolds of codimension one, is

one of the fundamental theories of submanifolds. As it is known, the main dif-

ference between the geometry of hypersurface in Riemannian manifold and in

semi-Riemannian manifold is that in the latter case the induced metric tensor
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field by the semi-Riemannian metric on the ambient space is not necessarily

non-degenerate. If the induced metric tensor field is degenerate, the classi-

cal theory of Riemannian and semi-Riemannian hypersurfaces fails since the

normal bundle and the tangent bundle of the hypersurface have a non zero

intersection.

The existence of null hypersurfaces is one of the most remarkable features

both in semi-Riemannian geometry and General Relativity [10], [13]. It has

been recently developted a mathematical framework for null submanifold ge-

ometry similar to its classical Riemannian counterpart was developed in [7],[8].

In the present paper, we investigate Ricci semi-symmetric null hypersurfaces

in a Lorentzian space form and is organized as follows. After the Preliminaries

section, in section 3, a necessary and sufficient condition for a screen quasi-

conformal null hypersurface to be Ricci semi-symmetric is obtained. We prove

that every totally umbilical or totally geodesic quasi-conformal null Hypersur-

faces of a (m+2) dimensional Lorentzian space forms are Ricci semi-symmetric.

At the end, we give a local classification of a Ricci semi-symmetric screen con-

formal null hypersurfaces of a Lorentzian space form.

2. Preliminaries

2.1. Null hypersurfaces. Let (M, g) be a (m+2)-dimensional semi-Riemannian

manifold of index ν, (0 < ν < m + 2). Consider a hypersurface M of M and

denote by g the tensor field induced by g on M . We say that M is a null (degen-

erate, lightlike ) hypersurface if rank(g) = m. Then the normal vector bundle

TM⊥ intersects the tangent bundle along a nonzero differentiable distribution

called the radical distribution of M and denoted by Rad(TM):

Rad(TM) : x 7→ Rad(TxM) = TxM ∩ TxM⊥. (2.1)

A screen distribution S(TM) on M is a non-degenerate vector bundle com-

plementary to TM⊥. A null hypersurface endowed with a specific screen dis-

tribution is denoted by the triple (M, g, S(TM)). As TM⊥ lies in the tangent

bundle, the following result has an important role in the study of the geometry

of lightlike hypersurfaces.

Theorem 2.1. [7] Let (M, g, S(TM)) be a null hypersurface of (M, g). Then

there exists a unique vector bundle tr(TM) of rank 1 over M , such that for

any non zero section ξ of TM⊥ on a coordinate neighborhood U ⊂ M , there

exists a unique section N of tr(TM) on U satisfying

g(N, ξ) = 1 and g(N,N) = g(N,W ) = 0, (2.2)

for all W ∈ Γ(S(TM)|U ).
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With this theorem we may write the following decomposition

TM |M = S(TM)⊥(TM⊥ ⊕ tr(TM)) = TM ⊕ tr(TM), (2.3)

where ⊥ denotes an orthogonal direct sum and ⊕ a direct sum. Throughout

the paper, we denoted by Γ(E) the C∞(M)-module of smooth sections of a

vector bundle E over M, while C∞(M) represents the algebra of a smooth

functions on M . Also, all manifolds are supposed to be smooth, paracompact

and connected.

Let (M, g, S(TM)) be a null hypersurface of a semi-Riemannian manifold

(M, g), ∇ be the Levi-Civita connection of M , ∇ the induced connection on

(M, g). Gauss and Weingarten formulas provide the following relations (see

details in [7], section 4.2)

∇XY = ∇XY + h(X,Y ), (2.4)

∇XV = −AVX +∇tXV, (2.5)

for all X,Y ∈ Γ(TM) and V ∈ tr(TM), where ∇XY and AVX belong to

Γ(TM) while h is a Γ(tr(TM))-valued symmetric C∞(M)-bilinear form on

Γ(TM) and ∇t is a linear connection on tr(TM). It is easy to see that ∇ is

a torsion-free connection. Define a symmetric C∞(M)-bilinear form B and a

1-form τ on the coordinate neighborhood U ⊂M by

B(X,Y ) = g(h(X,Y ), ξ), (2.6)

τ(X) = g(∇tXN, ξ) (2.7)

for all X,Y ∈ Γ(TMjU ). Then, on U , equations (2.4) and (2.5) become,

∇XY = ∇XY +B(X,Y )N, (2.8)

∇XN = −ANX + τ(X)N, (2.9)

respectively. It is important to stress the fact that the local second fundamental

form B in Eq.(2.8) does not depend on the choice of the screen distribution

and satisfies,

B(X, ξ) = 0, (2.10)

for all X ∈ Γ(TM |U ). Let P be the projection morphism of TM to S(TM)

with respect to the decomposition (2.2). We obtain: for all X,Y ∈ Γ(TM) and

U ∈ Γ(TM⊥),

∇XPY =
∗
∇X PY+

∗
h (X,PY ), (2.11)

∇XU = −
∗
AU X +

∗
∇tXU, (2.12)

where
∗
∇X PY and

∗
AU X belong to Γ(S(TM)),

∗
∇ and

∗
∇t are linear connec-

tions on Γ(S(TM)) and Γ(TM⊥) respectively,
∗
h is a Γ(TM⊥)-valued C∞(M)-

bilinear form on Γ(TM)×Γ(S(TM)),
∗
AU is a Γ(S(TM))-valued C∞(M)-linear
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operator on Γ(S(TM)).
∗
h and

∗
AU are the second fundamental form and the

shape operator of the screen distribution S(TM) respectively. Define on U the

following relations

C(X,PY ) = g(
∗
h (X,PY ), N), (2.13)

ε(X) = g(
∗
∇tX ξ,N). (2.14)

One shows that

ε(X) = −τ(X).

Thus, locally (2.11) and (2.12) become

∇XPY =
∗
∇X PY + C(X,PY )ξ, (2.15)

∇Xξ = −
∗
Aξ X − τ(X)ξ, (2.16)

respectively. The linear connection
∗
∇ is a metric connection on Γ(S(TM)).

But, in general, the induced connection ∇ on M is not compatible with the

induced metric g. Indeed, we have:

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ), (2.17)

for all X,Y ∈ Γ(TM |U ), where

η(X) = g(X,N), (2.18)

for all Y ∈ Γ(TM |U ). Finally, it is straightforward to verify that

B(X,Y ) = g(
∗
Aξ X,Y ), g(ANY,N) = 0, (2.19)

C(X,PY ) = g(ANX,Y ),
∗
Aξ ξ = 0, (2.20)

for X,Y ∈ Γ(TM |U ).

We denote the curvature tensor associated with ∇ and ∇ by R and R,

respectively. Then for all X,Y ∈ Γ(TM |U ), we have ([7]) the following

R(X,Y )Z = R(X,Y )Z +Ah(X,Z)Y −Ah(Y,Z)X + (∇Xh)(Y,Z)

− (∇Y h)(X,Z), (2.21)

g
(
R(X,Y )PZ, PW

)
= g

( ∗
R (X,Y )PZ, PW

)
+ C(X,PZ)B(Y, PW )

−C(Y, PZ)B(X,PW ), (2.22)

g
(
R(X,Y )ξ,N

)
= C(Y,

∗
Aξ X)− C(X,

∗
Aξ Y )− 2dτ(X,Y ). (2.23)
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2.2. Curvature condition of Semi-symmetric type. Let (M, g) be a semi-

Riemannian manifold. We denote its curvature operator by R(X,Y ).

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ]

for all X,Y ∈ Γ(TM), where ∇ denote the Levi-Civita connection on M . Then

the curvature tensor R and the Riemannian curvature tensor R are defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (2.24)

R(X,Y, Z,W ) = g(R(X,Y )Z,W ) (2.25)

For any (0, k)-tensor field on M , k ≥ 1, we define a (0, k + 2)-tensor field

R · T = 0 by

(R · T )(X1, . . . , Xk, X, Y ) = −T (R(X,Y )X1, X2, . . . , Xk)

−T (X1, X2, . . . , R(X,Y )Xk) (2.26)

for X,Y,X1, . . . , Xk ∈ Γ(TM). Curvature conditions, involving the form R·T ,

are called curvature conditions of semi-symmetric type [5]. A semi-Riemannian

manifold M is said to be semi-symmetric if it satisfies the condition R·R = 0.

Thus, from properties of curvature tensor, we have

(R· R)(U , V )W = R(X,Y )R(U, V )W −R(U, V )R(X,Y )W

− R(R(X,Y )U, V )W −R(U,R(X,Y )V )W

− R(U, V )R(X,Y )W, (2.27)

for all X,Y, U, V,W ∈ Γ(TM).

3. Ricci Semi-symmetric null hypersurfaces in Lorentzian space forms

Let M be a null hypersurface of a semi-Riemannian manifold (M(k), g) of

constant curvature k. We need the following proposition.

Proposition 3.1. [2] Let (M(k), g) be a semi-Riemannian manifold of con-

stant curvature k and M be a null hypersurface of M(k). Denote by R the

curvature tensor of the induced connection ∇ on M by the Levi-civita connec-

tion ∇. For any X,Y, Z ∈ Γ(TM), we have:

(a) R(X,Y )Z = k{g(Y,Z)X−g(X,Z)Y }−B(X,Z)ANY +B(Y, Z)ANX;

(b) (∇XB)(Y,Z)− (∇YB)(X,Z) = B(X,Z)τ(Y )−B(Y,Z)τ(X);

(c) B(ANY,X)−B(ANX,Y ) = 2dτ(X,Y );

(d) (∇YAN )(X) − (∇XAN )(Y ) + k{η(X)Y − η(Y )X} = τ(Y )ANX −
τ(X)ANY ;

(e) (∇X
∗
Aξ)(Y )− (∇Y

∗
Aξ)(X) = τ(Y )

∗
Aξ X − τ(X)

∗
Aξ Y − 2dτ(X,Y )ξ;

(f) ∇XPZ = ∇XZ −X · η(Z)ξ + η(Z)
∗
Aξ X + η(Z)τ(X)ξ.
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Now, we recall the definition of a screen conformal and screen quasi-conformal

null hypersurface of a semi-Riemannian manifoldM of a semi-Riemannian man-

ifold M .

Definition 3.2. ([1]). A null hypersurface (M, g, S(TM)) of a semi-Riemannian

manifold M is said to be locally screen (resp. globally) conformal if on any co-

ordinate neighborhood U (resp. U = M), the shape operators AN and
∗
Aξ of M

and its screen distribution S(TM) are related by

AN = ϕ
∗
Aξ, (3.1)

where ϕ is a non-vanishing smooth function on U (resp. U = M).

We remark that U will be connected and maximal in the sense that there is

no larger domain U ′ ⊃ U on which Eq. (3.1) holds. It is easy to see that Eq.

(3.1) is equivalent to

C(Y, PZ) = ϕB(Y,Z), (3.2)

for all X,Y ∈ Γ(TM |U ).

Definition 3.3. [11] A null hypersurface (M, g, S(TM)) of a semi-Riemannian

manifold is locally screen quasi-conformal if the shape operators AN and
∗
Aξ of

M and S(TM) satisfy

AN = ϕ
∗
Aξ +ψP, (3.3)

in Γ(TM), for some functions ϕ, ψ and P is the natural projection defined

in section 2.

We note that there are many examples of screen conformal null hypersurfaces

of semi-Riemannian manifolds see [1] and [11].

Next, we say that M is totally umbilical if there exists a smooth function ρ

such that

B(X,Y ) = ρg(X,Y ), (3.4)

for all X,Y ∈ Γ(TM), or equivalently,

∗
Aξ X = ρPX, (3.5)

for all X ∈ Γ(TM).

M is said to be a totally geodesic null hypersurface if the second fundamental

form B = 0 or equivalently
∗
Aξ= 0.

For any null hypersurface M of an (m+ 2)-dimensional Lorentzian manifold

(M(k), g) of constant curvature k, it is known that, the induced Ricci tensor

on M is symmetric. Since ξ is an eigenvector field of
∗
Aξ corresponding to the

eigenvalue 0 and
∗
Aξ is Γ(S(TM))-valued real symmetric,

∗
Aξ has m orthonormal

eigenvector fields in S(TM) and is diagonalizable. Consider a frame field of

eigenvectors {ξ, E1, . . . , Em} of
∗
Aξ such that {E1, . . . , Em} is an orthonormal
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frame field of S(TM). Then,
∗
Aξ Ei = λiEi, 1 ≤ i ≤ m. We call the

eigenvalues λi the screen principal curvatures for all i.

We have the following Lemma

Lemma 3.4. Let M be a screen quasi-conformal null hypersurface of a (m+2)

dimensional Lorentzian manifold (M(k), g) of constant curvature k. Then, the

Ricci tensor Ric of M is given by

Ric(X,Y ) = − mkg(X,Y )− ϕg(
∗
Aξ X,Y )α+ϕg(

∗
Aξ X,

∗
Aξ Y )

− mψg(
∗
Aξ X,Y ) + ψg(X,

∗
Aξ Y ), (3.6)

where α =trace
∗
Aξ.

Proof. From (1) in proposition 3.1, we have

R(X,Y )Z = k
{
g(Y, Z)X − g(X,Z)Y

}
−B(X,Z)ANY +B(Y,Z)ANX.

Then, we have by using equation (2.19) and (3.3):

R(X,Y )Z = k{g(Y, Z)X − g(X,Z)Y } − ϕg(
∗
Aξ X,Z)

∗
Aξ Y

+ϕg(
∗
Aξ Y, Z)

∗
Aξ X − ψg(

∗
Aξ X,Z)PY

+ψg(
∗
Aξ Y,Z)PX. (3.7)

In particular, since
∗
Aξ ξ = 0, PEi = Ei and Pξ = 0, we have

R(X, ξ)Y = −kg(X,Y )ξ

R(X,Ei)Y = k
{
g(Ei, Y )X − g(X,Y )Ei

}
− ϕg(

∗
Aξ X,Y )

∗
Aξ Ei

+ϕg(
∗
Aξ Ei, Y )

∗
Aξ X − ψg(

∗
Aξ X,Y )Ei + ψg(

∗
Aξ Ei, Y )PX.

We have then

g(R(X, ξ)Y,N) = −kg(X,Y ) = −kg(X,Y ). (3.8)

and

g(R(X,Ei)Y,Ei) = k{g(Ei, Y )g(X,Ei)− g(X,Y )g(Ei, Ei)}

−ϕg(
∗
Aξ X,Y )g(

∗
Aξ Ei, Ei) + ϕg(

∗
Aξ Ei, Y )g(

∗
Aξ X,Ei)

−ψg(
∗
Aξ X,Y )g(Ei, Ei) + ψg(

∗
Aξ Ei, Y )g(PX,Ei)

= k
{
g
(
g(X,Ei)Ei, Y

)
− g(X,Y )

}
− ψg(

∗
Aξ X,Y )

+ϕg
(
g(
∗
Aξ X,Ei)Ei,

∗
Aξ Y

)
− ϕg(

∗
Aξ X,Y )g(

∗
Aξ Ei, Ei)

+ ψg
(
g(X,Ei)Ei,

∗
Aξ Y

)
(3.9)
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The Ricci tensor of a null hypersurface is given by

Ric(X,Y ) =

m∑
i=1

g(R(X,Ei)Y,Ei) + g(R(X, ξ)Y,N) (3.10)

Then, by using (3.8), (3.9) and (3.10), we get (3.6). �

Definition 3.5. [14] Let M be a null hypersurface of an (m+ 2)-dimensional

semi-Riemannian manifold (M(k), g). We say that M is Ricci semi-symmetric

if the following condition is satisfied

(R(X,Y ) ·Ric)(X1, X2) = 0, (3.11)

for all X,Y,X1, X2 ∈ Γ(TM), where Ric is the Ricci tensor of M .

Next, The following general result gives a necessary and sufficient condition

for a quasi-conformal null hypersurface to be Ricci semi-symmetric.

Theorem 3.6. Let M be a screen quasi-conformal null hypersurface of a (m+

2) dimensional Lorentzian manifold (M(k), g) of constant curvature k. Then,

M is Ricci semi-symmetric if and only if for distinct i, j, the screen principal

curvatures satisfy

ψ(λi−λj)(mk−ϕλiλj)−(k+ϕλiλj)(λi−λj)(−ϕα+ϕλi+ϕλj−mψ+ψ) = 0,

(3.12)

where α =trace
∗
Aξ.

Proof. Since {ξ, E1, . . . , Em} a frame field of eigenvectors of
∗
Aξ such that

{E1, . . . , Em} is an orthonormal frame field of S(TM). Then
∗
Aξ Ei = λiEi,

1 ≤ i ≤ m. If i, j are distinct, we use (3.7) to get

R(Ei, Ej)Ej = (k+ϕλiλj +ψλj)Ei and R(Ej , Ei)Ei = (k+ϕλiλj +ψλi)Ej
(3.13)

By using (3.6) and (3.13), we obtain

Ric
(
R(Ei, Ej)Ei, Ej

)
= Ric

(
−R(Ej , Ei)Ei, Ej

)
=(k + ϕλiλj + ψλi)(mk + ϕλjα− ϕλ2j

+mψλj − ψλj) (3.14)

Ric
(
Ei, R(Ei, Ej)Ej

)
=(k + ϕλiλj + ψλj)(−mk − ϕλiα+ ϕλ2i

−mψλi + ψλi) (3.15)
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Then, by using (3.14) and (3.15), we

(R(Ei, Ej) ·Ric)(Ei, Ej) = −Ric
(
R(Ei, Ej)Ei, Ej

)
−Ric

(
Ei, R(Ei, Ej)Ej

)
= −(k + ϕλiλj)(λi − λj)(−ϕα+ ϕλi + ϕλj)

−mψ + ψ + ψ(λi − λj)(mk − ϕλiλj). (3.16)

Thus, if M is Ricci semi-symmetric i.e (R(X,Y ) · Ric) = 0, for all X and Y ,

we have (3.12).

Conversely, suppose that this condition holds. It is sufficient to verify

(R(Ei, Ej) ·Ric) = 0 for i 6= j. If i, j, r and s are all distinct, then

(R(Ei, Ej) ·Ric)(Er, Es) = (R(Ei, Ej) ·Ric)(Er, Er)
= (R(Ei, Ej) ·Ric)(Es, Es)
= 0.

By assumption, (R(Ei, Ej) ·Ric)(Ei, Ej) = 0. Finally symmetry takes care of

the rest. �

In the case when the screen is conformal, we have:

Corollary 3.7. If M is a screen conformal null hypersurface of a (m + 2)

dimensional Lorentzian manifold (M(k), g) of constant curvature k. Then, M

is Ricci semi-symmetric if and only if for distinct i, j , the screen principal

curvatures satisfy

(k + ϕλiλj)(λi − λj)(−α+ λi + λj) = 0, (3.17)

Proof. since ϕ is a non-vanishing smooth function, we get (3.17) by taking

ψ = 0. �

Example 3.8. Let (R4
1, ḡ) be a 4-dimensional semi-Euclidean space with Lorentzian

signature. Consider a Monge hypersurface M of R4
1 given by

t =
1√
2

(
x+

√
y2 + z2

)
.

It is easy to check that M is a null hypersurface whose radical distribution

RadTM is spanned by

ξ = ∂t +
y

√
2
√
y2 + z2

∂y +
z

√
2
√
y2 + z2

∂z +
1√
2
∂x.

It is readily checked that, one gets an orthonormal basis {E1, E2} of S(TM)

given by

E1 =
1√

y2 + z2
(−z∂y + y∂z) ;

E2 = ε
1

√
2
√
y2 + z2

(√
y2 + z2∂x − y∂y − z∂z

)
ε = ±.
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Then the null transversal vector bundle is given by

tr(TM) = Span

{
N = −1

2
∂t +

y
√

8
√
y2 + z2

∂y +
z

√
8
√
y2 + z2

∂z +
1√
8
∂x

}
.

By direct computation, we obtain

∇E1
ξ = ∇E1

ξ =
1

√
2
√
y2 + z2

E1 and ∇E2
ξ = ∇E2

ξ = 0. (3.18)

Thus, from the Weingarten formula (2.16), we have

∗
Aξ E1 = − 1

√
2
√
y2 + z2

E1,
∗
Aξ E2 = 0 and τ = 0.

Then, M has two distinct screen principal curvatures λ1 = − 1√
2
√
y2+z2

and

λ2 = 0. On the other hand, we have

∇E1
N =

1
√

8
√
y2 + z2

E1, ∇E2
N = 0 and ∇ξN = 0. (3.19)

Then, from the Weingarten formula (2.9), we have

ANE1 = − 1
√

8
√
y2 + z2

E1 =
1

2

∗
Aξ E1, ANE2 = 0 and ANξ = 0.

Next, any X ∈ Γ(TM), is expressed by

X = αE1 + βE2 + γξ,

where α, β, γ are smooth functions, and then

ANX = αANE1 + βANE2 + γANξ =
1

2

∗
Aξ X,

that is M is a screen conformal lightlike hypersurface of R4
1 with conformal

factor ϕ = 1
2 . Thus, M is a screen conformal null hypersurface of R4

1. The

two distinct screen principal curvatures satisfy Eq. (3.17), then M is Ricci

semi-symmetric.

Example 3.9. (The null cone Λ3
0 of R4

1)

Let R4
1 be the space R4 endowed with the semi-Euclidean metric

g(u, v) = −xx′ + yy′ + zz′ + tt′,

where u = (x, y, z, t) and v = (x′, y′, z′, t′). The null cone Λ3
0 is given by the

equation −x2 + y2 + z2 + t2 = 0 with (x, y, z, t) 6= (0, 0, 0, 0). It is known that

Λ3
0 is a lightlike hypersurface of R4

1 and the radical distribution is spanned by a

global vector field

ξ = x∂x + y∂y + z∂z + t∂t (3.20)
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on Λ3
0. It is easy to see that, one gets an orthonormal basis {E1, E2} of S(TΛ3

0)

given by

E1 =

(
t2 + y2

t2

) 1
2 (
∂y −

y

t
∂t

)
,

E2 =

(
t2 + y2

x2

) 1
2
(
− yz

t2 + y2
∂y + ∂z +− zt

t2 + y2
∂t

)
.

As ξ is a position vector field, we get for all i = 1, 2

∇Eiξ = ∇Eiξ = Ei.

Using (2.16), we have
∗
Aξ Ei + τ(Ei)ξ + Ei = 0. As

∗
Aξ is Γ(S(TM))-valued

we obtain
∗
Aξ Ei = −Ei, (3.21)

for all i = 1, 2 This proves that λ1 = λ2 = −1 and τ = 0. The two distinct

screen principal curvatures satisfy Eq. (3.17). Then, The null cone Λ3
0 of R4

1

is Ricci semi-symmetric.

t

R2

Figure 1. Projection of M in R3 for x = −1, x = 0 and x = 1

More generally, we have the following Proposition.

Proposition 3.10. a) Every totally umbilical or totally geodesic quasi-

conformal null Hypersurfaces of a (m+2) dimensional Lorentzian space

forms are Ricci semi-symmetric.

b) Every screen quasi-conformal null hypersurface of an (n+2)-dimensional

Lorentzian space Rn+2
1 , such that at least one screen principal curva-

tures is zero, is Ricci semi-symmetric.
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O

x0

R3

S2

Figure 2. The lightcone Λ3
0 of R4

1 is a stacking of spheres

S2(x0) of R3

Proof. a) is evident. b) By using k = 0 in Eq. (3.12) and assumption that

there exists i0 such that λi0 = 0, we get the result. �

This proposition shows the existence of a large class of Ricci semi-symmetric

null hypersurface.

We have the following local classification theorem.

Theorem 3.11. Let M be a screen conformal Ricci semi-symmetric null hyper-

surface of (m+2)-dimensional Lorentz manifold (M(k), g) of constant curvature

k, then M is one of the following:

(1) M is a locally null triple product manifolds locally a product of a null

curve ( M = C × M ′ = C × Mλ × Mµ), where C is a null curve,

Mλ, ‘Mµ are two totally umbilical spaces forms

(2) M is totally geodesic,

(3) locally M = C×L×M0; where C is a null curve, L is a non-null curve

and M0 is an (m− 1)-dimensional totally geodesic Euclidean space.

Proof. Since for any screen conformal null hypersurface M of an (m + 2)-

dimensional Lorentzian manifold (M(k), g) of constant curvature k, it is known

that, the screen distribution S(TM) is Riemannian, integrable and the induced

Ricci tensor on M is symmetric [1].

Then, according to Proposition 3.4 in [7], there exists a canonical null pair

{ξ,N} satisfying (2.2) such that the corresponding 1-form τ from (2.9) vanishes.

Since ξ is an eigenvector field of
∗
Aξ corresponding to the eigenvalue 0 and

∗
Aξ is Γ(S(TM))-valued real symmetric,

∗
Aξ has m orthonormal eigenvector

fields in S(TM) and is diagonalizable. Consider a frame field of eigenvectors
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{ξ, E1, . . . , Em} of
∗
Aξ such that {E1, . . . , Em} is an orthonormal frame field of

S(TM). Then,
∗
Aξ Ei = λiEi, 1 ≤ i ≤ m. In the following, we assume τ = 0.

(1) First, suppose all screen principal curvatures are nonzero i.e rank
∗
A= m.

We assert that it is impossible for three screen principal curvatures to

be distinct. for this, Consider λ, γ and µ three distinct screen principal

curvatures. Then we have the equations:

(k + ϕλµ)(λ− µ)(−α+ λ+ µ) = 0

(k + ϕµγ)(µ− γ)(−α+ µ+ γ) = 0

(k + ϕγλ)(γ − λ)(−α+ γ + λ) = 0

In order for these to be satisfied, two factors of the same type must

vanish, for example (k + ϕλµ) = (k + ϕµγ) = 0 implies λ = γ which

gives a contradiction. Thus, there are at most 2 distinct screen prin-

cipal curvatures, say λ and µ. By [12], the functions λ and µ have

constant multiplicities and are differentiable along each leaf of S(TM).

Moreover, the distributions

Tλ = {X ∈ Γ(S(TM))|
∗
Aξ X = λX}

and

Tµ = {X ∈ Γ(S(TM))|
∗
Aξ X = µX}

are differentiable distributions.

Let X,Y ∈ Γ(Tλ), we have [X,Y ] = [X,Y ]λ + [X,Y ]µ. Then

(
∗
Aξ −λI)[X,Y ] = (

∗
Aξ −λI[X,Y ]λ + (

∗
Aξ −λI[X,Y ]µ

=
∗
Aξ [X,Y ]λ+

∗
Aξ [X,Y ]µ − λ[X,Y ]λ − λ[X,Y ]µ

= λ[X,Y ]λ + µ[X,Y ]µ − λ[X,Y ]λ − λ[X,Y ]µ

= (µ− λ)[X,Y ]µ

Hence, for all X,Y ∈ Γ(Tλ), (
∗
Aξ −λI)[X,Y ] ∈ Γ(Tµ).

Since τ = 0, from (e) in proposition3.1 we have

(∇X
∗
Aξ)(Y )− (∇Y

∗
Aξ)(X) = 0.

Then it follows that if X,Y ∈ Γ(Tλ),

∗
Aξ ([X,Y ]) =

∗
Aξ (∇XY )−

∗
Aξ (∇YX).

However,
∗
Aξ X = λX,

∗
Aξ Y = λY

so that
∗
Aξ ([X,Y ]) = (X · λ)Y − (Y · λ)X + λ[X,Y ].
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Thus

(
∗
Aξ −λI)[X,Y ] = (X · λ)Y − (Y · λ)X.

The left side of the above equation lies in Tµ and the right side in Tλ,

then

(
∗
Aξ −λ)[X,Y ] = 0, (X · λ)Y − (Y · λ)X = 0

implies that [X,Y ] ∈ Tλ which prove that Tλ is integrable. Also, since

(X · λ)Y − (Y · λ)X = 0, if dimTλ > 1, we may choose X and Y to be

linearly independent. Thus (X · λ) = 0.

If we choose X,Y ∈ Γ(Tµ), by the same argument, we prove that Tµ
is integrable and (X · µ) = 0. Hence, λ and µ are constant along the

screen distribution.

By lemma 3.4 in [2], if X ∈ Γ(Tλ), and Y ∈ Γ(Tµ), then ∇XY ∈
Γ(Tµ) and∇YX ∈ Γ(Tλ) which shows that Tλ and Tµ are parallel along

their normals in S(TM).

From ([1]) a conformal lightlike hypersurface M is locally a product

manifold C ×M ′, where C is a null curve and M ′ is a leaf of S(TM).

Since the leaf M ′ of S(TM) is Riemannian and S(TM) = Tλ⊕orth Tµ,

where Tλ and Tµ are parallel distributions with respect to the induced

connection
∗
∇ of M ′, by the decomposition theorem of de Rham ([6])

we have M ′ = Mλ ×Mµ, where Mλ and Mµ are some leaves of Tλ
and Tµ, respectively. It follows that M = C ×M ′ = C ×Mλ ×Mµ.

Let X,Y, Z,W ∈ Γ(Tλ). Using (1) in Proposition (3.1) and equations

(2.19) and (3.1) we have

g(R(X,Y )Z,W ) = k{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}

− ϕg(
∗
Aξ X,Z)g(

∗
Aξ Y,W )+ϕg(

∗
Aξ Y,Z)g(

∗
Aξ X,W )

= k{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}
−ϕλ2g(X,Z)g(Y,W ) + ϕλ2g(Y, Z)g(X,W )

= (k + ϕλ2)g
(
g(Y, Z)X − g(X,Z)Y,W

)
. (3.22)

Again, by using (3.1), (3.2), (2.19), (2.20), (2.22) and (3.22), we

have

(k + ϕλ2)g
(
g(Y,Z)X − g(X,Z)Y,W

)
=

g(
∗
R
(
X,Y )Z,W

)
− ϕλ2g

(
g(Y,Z)X − g(X,Z)Y,W

)
.

Then,

∗
R (X,Y )Z = (k + 2ϕλ2){g(Y, Z)X − g(X,Z)Y },

for all X,Y, Z in Γ(Tλ). Thus Mλ is a Riemannian manifold of constant

curvature (k + 2ϕλ2).
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As M ′ is a Riemannian submanifold of codimension 2 of Rm+2
1 ,

consider in the normal bundle TM ′⊥, the vector fields

ζ1 =
ϕ√
2|ϕ|

ξ +
1√
2|ϕ|

N and ζ2 =
ϕ√
2|ϕ|

ξ − 1√
2|ϕ|

N.

Clearly, {ζ1, ζ2} is an orthonormal basis , where ζ1 and ζ2 are spacelike

and timelike respectively. Then for any X, Y ∈ Γ(TMλ), we have

∇XY = ∇λXY +

m+2∑
a=r+1

gλ(AξλaX,Y )ξλa , (3.23)

where gλ, ∇λ are the induced metric and the induced connection on

Mλ respectively, ξλa are orthonormal normals to TMλ in Rm+2
1 such

that ξλm+1 = ζ1 and ξλm+2 = ζ2, Aξλa are corresponding shape operators

of ξλa . In addition,

∇XY = ∇XY +B(X,Y )N

= ∇XY + g(
∗
Aξ X,Y )N

=
∗
∇X Y + C(X,Y )ξ + g(

∗
Aξ X,Y )N

=
∗
∇X Y + g(ANX,Y )ξ + g(

∗
Aξ X,Y )N

=
∗
∇X Y + ϕg(

∗
Aξ X,Y )ξ + g(

∗
Aξ X,Y )N

= ∇λXY +

m∑
a=r+1

gλ(A′ξλaX,Y )ξλa + g(
∗
Aξ X,Y )(ϕξ +N)

= ∇λXY +

m∑
a=r+1

gλ(A′ξλaX,Y )ξλa + λg(X,Y )(ϕξ +N), (3.24)

where A′ξλa
denotes the shape operator of Mλ with respect to ξλa in

S(TM). By Theorem ??, Mλ is totally geodesic in S(TM), and con-

sequently the equation (3.24) can be written as follows:

∇XY = ∇λXY + λgλ(X,Y )(ϕξ +N)

= ∇λXY +
√

2|ϕ|λgλ(X,Y )ζ1. (3.25)

Comparing (3.23) and (3.25), we have

AξλaX = 0, ∀a 6= m+ 1

and

Aξλm+1
X = Aζ1X =

√
2|ϕ|λX.

Thus, Mλ is a totally umbilical submanifold of M(k). Similarly, we can

prove that that Mµ is a Riemannian manifold of constant curvature

(k + 2ϕµ2) and is a totally geodesic submanifold in M(k).
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(2) Second, suppose that there exists a zero screen principal curvature i.e

rank
∗
Aξ< m. Then there exists i such that λi = 0. Thus, from (3.12)

we have λj = α = tr
∗
Aξ i.e (q − 1)λj = 0, where q is the multiplicity

of λj .

If q 6= 1, then λj = 0 for all j. Thus all screen eigenvalues are zero

i.e.
∗
Aξ= 0 which prove that M is totally geodesic.

(3) if q = 1, then the multiplicity of λj is one. So we have two distinct

eigenvalues λ = 0 and µ 6= 0. As in (1), we define two distributions

T0 = {X ∈ Γ(S(TM))
∗
Aξ X = 0}

and

Tµ = {X ∈ Γ(S(TM))
∗
Aξ X = µX}

and we prove that a leaf M0 of T0 is a totally geodesic (m − 1)-

dimensional Riemannian manifold of zero constant sectional curvature

and the leaf L of Tµ is a curve. Thus M is a locally product C×L×M0.

�
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