1. B. Nicolaescu, Lagrange spaces with (α; β) - metric, A ppl. Sci.,3 :1 , 3(2001).
2. B. Nicolaescu, The variational problem in Lagrange spaces endowed with (α; β)- metric,in Balan, Vladimir (ed.),Proceedings of the 3rd international colloquium of Mathematics in engineering and numericalphysics (MENP -3) Bucharest, Romania, (2004), Mathematics sections, BSG proceedings, 12, Geometry Balken Press, Bucharest, (2005), 202 - 207.
3. C. Shibata, On invariant tensors of β- changes of Finsler metrics, J. Math. kyoto Univ.,24(1984), 163-188.
4. J. Kern, Lagrange geometry, Arch Math., 25(1974), 438-443.
5. I.M.Gelfand, S.V. Fomin, Calculus of variations, Dover publications, Mineola,(2000).
6. M. Matsumoto , On some transformations of locally Minkowskian space, Tensor. N. S.22(1971), 103-111.
7. M. Matsumoto , Theory of Finsler spaces with (α; β)- metric, Rep. Math. Phys.,31:1(1992).
8. R. Miron, A Lagrangian theory of relativity, I,II, An. stiint . Univ. AI.I. cuza Iasi, N. S.,sect. Ia,32 : 2,3, 37-62, 7 -16 (1986).
9. R. Miron, Lagrange geometry, Math. Comput. Modelling, 20(1994), 4-5, 25-40.
10. R. Miron, M. Anastasiei, The geometry of Lagrange spaces : theory and applications,Kluwer Acad. Publ., Dordrecht, (1994).
11. S.S.Chern, Z. Shen, Riemann - Finsler geometry, Nankai Tracts in Mathematics, World Scientific, Hackensack, 06(2005).
12. T. N. Pandey, V. K. Chaubey, Lagrange spaces with β- change, Int. J. Contemp.Math.sci. 07(2012), 45-48, 2363-2371.
13. T. N. Pandey, V. K. Chaubey, The variational problem in Lagrange spaces endowed with (γ; β) metric, Int. J. Pure.Appl. Math., 71:4(2011), 633-638.
14. V.K.Chaubey, B.K. Tripathi, S.B.Chandak, Lagrange spaces with change Z.shen square metric, Siberian electronic Mathematical reports, 20:1(2023), 17-24.
15. Z. Shen, G. C. Yildirim, On a class of projectively flat metrics with constant flag curvature, can. J. Math., 60:2(2008), 443-456.