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Abstract. The aim of the present paper is to study the Lagrange spaces due to

changed (α, β)−metric with Z. Shen square- Randers metric L̄ = (α+β)2/α+β

and obtained fundamental tensor fields for these space. Further, we studied

about the variational problem with fixed endpoints for the Lagrange spaces

due to above change.
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1. Introduction

The notion of (α, β)- metric was introduced by Matsumoto [7] as general-

ization of Randers metric L = α + β where α =
√
aij(x)yiyj was a regular
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Riemannian metric and β = bi(x)yi is one - form metric. Rather than Ran-

ders metric, there are several important (α, β)- metric such as Kropina met-

ric L = α2/β, Matsumoto metric L = α2/α− β, generalized Kropina metric

L = αn+1/βn, Shen’s square metric L = (α+ β)2/α etc. Z. Shen square metric

[11],[15] was also very interesting because it was constructed from the Berwald

metric by using suitable α and β, and it was projectively flat on unit ball with

constant flag curvature and Randers metric was also introduced by Berwald in

connection with a two dimensional Finsler space with rectilinear extremal and

was investigated by Randers.

Matsumoto [6] also introduced the transformations of Finsler metric which

was given by,

L
′
(x, y) = α(x, y) + β(x, y)

L
′′2(x, y) = α2(x, y) + β2(x, y)

where, β = bi(x)yi, bi(x) are components of covariant vector which was a func-

tion of position alone. Further he had obtained the relationship between the

imbedding class numbers of (Mn, L
′
), (Mn, L

′′
) and (Mn, L). Generalizing

above transformations, Shibata [3] had studied the properties of Finsler space

(Mn, L̄) whose fundamental metric function L̄(x, y) was obtained from L by

L̄(x, y) = f(α, β)

where f = f(α, β) is a positively homogeneous function of degree one in L and

β.

Now the geometry of a Lagrange space over a real, finite - dimensional man-

ifold M had been introduced and studied as a sub - geometry of the geometry

of the tangent bundle TM by R. Miron [10]. This geometry was developed

together with his collaborators in [8], [9], [10]. Compared to Finsler geometry,

when the assumption of homogeneity was relaxed then a new geometry arose

which was known as Lagrange geometry, i.e. the Finsler geometry is a particu-

lar case of Lagrange geometry where the fundamental function is homogeneous.

Now we state some examples of Lagrange spaces which are reducible to

Finsler spaces.

Example 1.1. Every Riemannian space (M, gij(x)) determines a Finsler space

Fn = (M,F (x, y)) and consequently a Lagrange space Ln = (M,F 2(x, y)),

where

F (x, y) =
√
gij(x)yiyj .

The fundamental tensor of this Finsler space coincides to the metric tensor

gij(x) of the Riemannian manifold (M, gij(x)).
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Example 1.2. Let us consider the function

4
√

(y1)4 + (y2)4 + ......+ (yn)4,

defined in a preferential local system of coordinates on T̂M . The pair Fn =

(M,F (x, y)), with F defined in above is a Finsler space. The fundamental

tensor field gij can be easily calculated. This was the first example of Finsler

space which was given from the lecturer of Riemann in 1854.

Now we give some example of Lagrange spaces, which are not reducible to

Finsler spaces

Example 1.3. The following Lagrangian from electrodynamics

L(x, y) = mcγij(x)yiyj +
2e

m
Ai(x)yi + U(x),

where γij(x) is a pseudo - Riemannian metric, Ai(x) a covector field and U(x) a

smooth function , m, c, e are the well - known constants from physics, determine

a Lagrange space Ln.

Example 1.4. Consider the Lagrangian function

L(x, y) = F 2(x, y) +Ai(x)yi + U(x),

where F (x, y) is the fundamental function of a Finsler space, Ai(x) are the

component of a covector field and U(x) a smooth function gives rise to a re-

markable Lagrange space, called the Almost Finsler- Lagrange space (shortly

AFL- space).

Geometric Problems derived from the variational problem of a Lagrangian

were studied by J Kern [4] in detail. He said that the variational problem can

be formulated for differentiable Lagrangians and can be solved in cases when

we consider the parameterized curves, even if the integral of action depends on

the parameterization of considered the curve.

In the year 2001, B. Nicolaescu [2] studied the Lagranges spaces with (α, β)−
metric and variational problem with fixed endpoints in the year 2004 [1], and

in 2011, Pandey and Chaubey [13] considered this problem for the (γ, β)−
metric, where γ3 = aijk(x)yiyjyk was a cubic metric and β = bi(x)yi is a one

form metric on TM . Further, in 2023 Tripathi, Chandak and Chaubey [14]

considered the problem of Lagrange space with Z. Shen change in T̂M .

In the present paper, we transform the Z. Shen square Randers metric as

L =
(α+ β)2

α
+ β

and studied Lagrange space due to this transformation. The above generaliza-

tion is very interesting because it enhances our understanding and geometric

meaning of non - Riemannian quantities. we obtained fundamental tensor fields

for these space and also studied about the variational problem with fixed end-

points of Lagrange spaces due to this change.
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2. Lagrange metrics

In this section we give the definitions of regular, differentiable Lagrangian

over the tangent manifolds TM and T̂M , where M is a differentiable, real

manifold of dimension n. Let (TM, τ,M) be the tangent bundle of a C∞-

differentiable real n- dimensional manifold M . If (U, φ) is a local chart on M ,

then the coordinates of a point u = (x, y) ∈ τ−1(U) ⊂ TM will be denoted by

(x, y). R. Miron [10] given following definitions :

Definition 2.1. A differentiable Lagrangian on TM is a mapping L : (x, y) ∈
TM → L(x, y) ∈ R,∀u = (x, y) ∈ TM, which is of class C∞ on T̂M = TM\(0)

and is continuous on the null section of the projection τ : TM →M, such that

gij =
1

2

∂2L(x, y)

∂yi∂yj
, (2.1)

is a (0,2)- type symmetric d- tensor field on TM .

Definition 2.2. A differential Lagrangian L on TM is said to be regular if

rank ‖ gij(x, y) ‖= n, ∀(x, y) ∈ T̂M.

For the Lagrange space Ln = (M,L(x, y)) we say that L(x, y) is the funda-

mental function and gij(x, y) is the fundamental (or metric) tensor. We will

denote by gij the inverse matrix of gij. This means that

gikgjk = δij .

Now the definition of a Lagrange space was given by

Definition 2.3. A Lagrange space is a pair Ln = (M,L) formed by a smooth,

real n- dimensional manifold M and a regular differentiable Lagrangian L on

M , for which the d- tensor field gij from (2.1) has a constant signature on T̂M.

Now, Let L : TM → R be a differentiable Lagrangian on the manifold M ,

which was not necessarily regular. A curve c : t ∈ [0, 1] → (xi(t)) ∈ U ⊂ M

having the image in a domain of a chart U of M , has the extension to T̂M

given by

c∗ : t ∈ [0, 1]→
(
xi(t),

dxi(t)

dt

)
∈ τ−1(U).

The integral of action of the Lagrangian L on the curve c is given by the

functional

I(c) =

∫ 1

0

L(x(t),
dx

dt
)dt. (2.2)
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Consider the curve cε : t ∈ [0, 1] → (xi(t) + εvi(t)) ∈ M, which have the same

endpoints xi(0), xi(1) as the curve c, vi(0) = vi(1) = 0 and ε is a real number,

sufficiently small in absolute value, such that Imcε ∈ U. The extension of the

curve cε to TM is

c∗ε : t ∈ [0, 1]→
(
xi(t) + εvi(t),

dxi

dt
+ ε

dvi

dt

)
∈ τ−1(U)

The integral of action of the Lagrangian L on the curve cε is,

I(cε) =

∫ 1

0

L

(
x+ εv,

dx

dt
+ ε

dv

dt

)
dt.

A necessary condition for I(c) to be an extremal value I(cε) is

dI(cε)

dε
|ε=0 = 0.

In order that the functional I(c) be an extremal value of I(cε) , it is necessary

that c be the solution of the Euler- Lagrange equations,

Ei(L) =
∂L

∂xi
− d

dt
(
∂L

∂yi
) = 0, yi =

dxi

dt
.

3. The fundamental tensor of a Lagrange space with changed Z. Shen

square Randers metric

In general, we know that the component bi is the electromagnetic potential

of Ln and the tensor Fij = ∂jbi − ∂ibj is the electromagnetic tensor field in

Lagrange spaces. Now we define the changed Z. Shen square Randers metrics

as follows :

Definition 3.1. A Lagrange space L̄n = (M, L̄(x, y)) is known as Z. Shen

square Randers metric if L̄, depends only on α(x, y) and β(x, y),

L̄{α(x, y), β(x, y)} =
(α+ β)2

α
+ β

Here, we shall use the following notations throughout the paper,

∂̇iα =
∂α

∂yi
, ∂̇iβ =

∂β

∂yi
, ∂̇i∂̇jα =

∂2α

∂yi∂yj
, L̄α =

α2 − β2

α2

L̄β =
3α+ 2β

α
, L̄αα =

2β2

α3
, L̄αβ = −2β

α2
, L̄ββ =

2

α
Now we have

Proposition 3.2. For the Lagrange space Ln, the following relations hold good:

∂̇iα = α−1yi, ∂̇iβ = bi(x), ∂̇i∂̇jα = 2∂̇jyi − α−3yiyj , ∂̇i∂̇jβ = 0,(3.1)

where yi = gijy
j.
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Now, we introduce the moments of the Lagrangian L̄{α(x, y), β(x, y)} =
(α+β)2

α + β,

pi =
1

2

∂L̄

∂yi
=

1

2α2

{
(α2 − β2)∂̇iα+ α(3α+ 2β)∂̇iβ

}
.

Thus we have

Proposition 3.3. The moments of the Lagrangian L̄(x, y) with changed Z.Shen

square Randers metric is given by

pi = ρyi + ρ1bi, (3.2)

where

ρ =
1

2

(α2 − β2)

α3
, ρ1 =

(3α+ 2β)

2α
.

The two scalar functions defined in (3.2) are called the principal invariants

of the Lagrange space L̄n.

Proposition 3.4. The derivatives of principal invariants of the Lagrange space

L̄n due to changed Z. Shen square Randers metric are given by

∂̇iρ = ρ−2yi + ρ−1bi, ∂̇iρ1 = ρ−1yi + ρ0bi, (3.3)

where

ρ−2 =
1

2
α−5(3β2 − α2), ρ−1 = − β

α3
, ρ0 =

1

α
.

Now, the Energy of a Lagrangian is given by

EL̄ = yi
∂L̄

∂yi
− L̄.

Thus we have

Proposition 3.5. The Energy of a Lagrangian L̄ with Z. Shen square Randers

metric is given by

EL̄ =
(α2 − β2)(1− α)

α2
. (3.4)

Now we can determine the fundamental tensor ḡij of the Lagrange space L̄

with changed Z. Shen square Randers metric as follows:

Proposition 3.6. The fundamental tensor ḡij of the Lagrange space L̄ with

Z. Shen square Randers metric is given as

ḡij =
(α2 − β2)

α3
gij + α−1bibj −

β

α3
(biyj + bjyi) +

(3β2 − α2)

2α5
yiyj . (3.5)
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The above equation can be rewritten as

ḡij =
(α2 − β2)

α3
gij + didj

where

di =

√
(3β2 − α2)

2α5
yi +

1√
α
bi, gij =

1

2

∂2L

∂yi∂yj
.

Proposition 3.7. The reciprocal tensor ḡij of the fundamental tensor ḡij in

L̄n is given by

ḡij =
α3

(α2 − β2)
gij − 1

(1 + d2)
didj , (3.6)

where,

di =
α3

(α2 − β2)
gijdj

and didi = d2 and gij is reciprocal of the gij.

4. Euler - Lagrange equations in Lagrange spaces with changed Z.

Shen square Randers metric

The Euler - Lagrange equations of the Lagrange spaces with changed Z.

Shen square Randers metric are,

Ei(L̄) =
∂L̄

∂xi
− d

dt
(
∂L̄

∂yi
) = 0, yi =

dxi

dt

Considering the relations

∂L̄

∂xi
=

1

α
[(
α2 − β2

α
)
∂α

∂xi
+ (3α+ 2β)

∂β

∂xi
],

∂L̄

∂yi
=

1

α
[(
α2 − β2

α
)
∂α

∂yi
+ (3α+ 2β)

∂β

∂yi
],

and

d

dt

∂L̄

∂yi
=

d

dt

{α2 − β2

α2

} ∂α
∂yi

+
(α2 − β2)

α2

d

dt
(
∂α

∂yi
) +

d

dt

{ (3α+ 2β)

α

} ∂β
∂yi

+
(3α+ 2β)

α

d

dt
(
∂β

∂yi
).

By direct calculations , we have

Ei(L̄) =
{α2 − β2

α2

}
Ei(α)+

(3α+ 2β)

α
Ei(β)− ∂α

∂yi
d

dt

{ (α2 − β2)

α2

}
− ∂β
∂yi

d

dt

{ (3α+ 2β)

α

}
,

yi =
dxi

dt
,
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It’s give

Ei(L̄) = {α
2 − β2

α2
}Ei(α) +

(3α+ 2β)

α
Ei(β)− ∂α

∂yi
(
2β2

α3

dα

dt
− 2β

α2

dβ

dt
)

+
∂β

∂yi
(
2β

α2

dα

dt
− 2

α

dβ

dt
).

As well have

Ei(β) = Fir
dxr

dt
,

where,

Fir =
∂Ar
∂xi
− ∂Ai
∂xr

,

is the electromagnetic tensor field. Finally we have the following relation :

Ei(L̄) = {α
2 − β2

α2
}Ei(α) +

(3α+ 2β)

α
Fir

dxr

dt
− ∂α

∂yi
(
2β2

α3

dα

dt
− 2β

α2

dβ

dt
)

+
∂β

∂yi
(
2β

α2

dα

dt
− 2

α

dβ

dt
).

Proposition 4.1. The Euler - Lagrange equation in the Lagrange space L̄n

with changed Z. Shen square Randers metric L̄ are,

Ei(L̄) = Ei

{
(α+ β)2

α
+ β

}
, yi =

dxi

dt
. (4.1)

For every smooth curve c on the base manifold M , the energy function of

the Lagrangian L̄(x, y) can be written as

dEL̄
dt

= −[
∂L̄

∂xi
− d

dt
(
∂L̄

∂yi
)]yi = 0, where yi =

dxi

dt
,

or
dEL̄
dt

= −Ei(L̄)
dxi

dt
.

Thus using proposition (4.1) we have

Theorem 4.2. In a differentiable Lagrangian L̄(x, y), the energy function EL̄
is conserved along the solution curves c of the Euler - Lagrange equations for

changed Z. Shen square Randers metric.

If we have the natural parametrization of the curve ∈ [0, 1]→ (xi(t) ∈ M),

then

L(x,
dx

dt
) = 1.

Thus we get:
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Proposition 4.3. In the canonical parametrization the Euler - Lagrange equa-

tions for changed Z. Shen square Randers metric in Lagrange space L̄n are

Ei(L̄) = {α
2 − β2

α2
}Ei(α) +

(3α+ 2β)

α
Fir

dxr

dt

+
∂β

∂yi
(
2β

α2

dα

dt
− 2

α

dβ

dt
).

(4.2)

Proposition 4.4. If the 1- form β is constant on the integral curve c of the

Euler - Lagrange equations for Z. shen square Randers metric , then (4.2)

rewrite as the Lorentz equations of the L̄n

Ei(L̄) =

{
α2 − β2

α2

}
Ei(α) +

(3α+ 2β)

α
Fir

dxr

dt
. (4.3)

5. Conclusion

In this paper, we have continued the investigations on the new introduced

changed Z. Shen square Randers metric which is defined as L̄ = (α+β)2

α +β . The

above generalization is very interesting because it enhance our understanding

and geometric meaning of non - Riemannian quantities. Further, we obtained

fundamental tensor fields for these spaces and the variational problem with

fixed endpoints for the Lagrange spaces.
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