Inheritance Kulkarni - Nomizu product in generalized BK-fifth recurrent Finsler space by Lie - derivative

Document Type : Original Article

Authors

1 Department of Mathematics, Education Faculty, Aden University, Yemen Department of Engineering, Faculty of Engineering & Computing University of Science and Technology, Aden, Yemen

2 Department of Mathematics, Faculty of Education, Zanjbar Abyan University, Abyan, Yemen

Abstract

This paper deals with space known as "generalized fifth recurrent Finsler space." The core idea centers around a mathematical object called the" Inheritance Kulkarni-Nomizu product" which is applied to two Ricci tensors satisfy an inheritance property. We apply the inheritance property with Kulkarni - Nomizu product of two Ricci tensosrs by using Lie - derivative in generalized fifth recurrent Finsler space. In addition, we prove that the Lie - derivative of the inheritance Kulkarni - Nomizu product of K-Ricci tensor and H-Ricci tensor vanishes simultaneously.

Keywords


1. H. An and S. Deng, Invariant (α, β)− metrics on homogeneous manifolds, Monatsh.
Math., 154 (2008), 89-102.
2. P. Bahmandoust and D. Latifi, Naturally reductive homogeneous (α, β) spaces, Int. J.
Geom. Methods Mod. Phys. 17(8) (2020), 2050117.
3. P. Bahmandoust, D. Latifi, On Finsler s−manifolds, Eur. J. Pur App. Math. 10(5)
(2017) 1113-1125.
4. D. Bao, S. S. Chern and Z. Shen, An introduction to Riemann-Finsler geometry,
Springer-Verlag, New-York, 2000.
5. L. Berwald,
¨
Uber die n-dimensionalen Geometrien konstanter Kr¨ummung, in denen die
Geraden die k¨urzesten sind. Math. Z. 30(1929), 449-469.
6. S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts in
Mathematics, Vol. 6 (2005).
7. M. Ebrahimi, D. Latifi, Homogeneous geodesics on five-dimensional generalized symmet-ric spaces, Int. J. Geom. 11 (2022), 17-23.
8. M. Ebrahimi, D. Latifi, Geodesic vectors of Randers metric on generalized symmetric
spaces, Global Journal of Advanced Research on Classical and Modern Geometries 10
(2021), 153-165.
9. P. Habibi, A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata, 149
(2010), 121-127.
10. O. Kowalski, Generalized symmetric spaces, Lecture Notes in Mathematics, Springer
Verlag (1980).
11. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57
(2007) 1421-1433.
12. D. Latifi and A. Razavi, Bi-invariant Finsler metrics on Lie groups, Austral. J. Basic
Appl. Sci., 5(12) (2011), 507-511.
13. D. Latifi, Bi-invariant (α, β)− metrics on Lie groups, Acta. Uni. Apulensis, 65 (2021),
121-131.
Invariant square metrics on reduced Σ−spaces 61
14. D. Latifi and M. Toomanian, On Finsler Σ−spaces, J. Cont. Math. Ana., 50 (2015),
107-115.
15. D. Latifi, On generalized symmetric square metrics, Acta. Uni. Apulensis, 68 (2021),
63-70
16. D. Latifi, Berwald manifolds with parallel S−structures , Acta. Uni. Apulensis, 36 (2013),
79-86.
17. A. J. Ledger and A. Razavi, Reduced Σ−spaces, Illinois J. Math., 26 (1982), 272-292.
18. Matsumoto, M., On Finsler spaces with Randers metric and special forms of important
tensors, J. Math Kyoto Univ., 14 (1975), 477-498.
19. M. Parhizkar and D. Latifi, On the flag curvature of invariant (α, β)− metrics, Int. J.
Geom. Methods Mod. Phys., 13 (2016), 1650039, 1-11.
20. L. Zhang and S. Deng, On generalized symmetric Finsler spaces, Balkan J. Geom. Appl.
21 (2016), 113-123.
21. S. Zolfegharzadeh, D. Latifi and M. Toomanian, Properties on Finsler Σ−spaces, Bull.
Iran. Math. Soc. 49(60) (2023), 1-13.