On statistical generalized recurrent manifolds

Document Type : Original Article

Authors

1 Department of Mathematics, University of Zanjan, Zanjan, Iran

2 Department of Mathematics ,University of Zanjan, P.O Box 45371-38791, Zanjan, Iran

Abstract

In this paper, we introduce a statistical generalized recurrent manifold, which its curvature tensor
R*, satisfies the generalized recurrent condition ∇*R*=ΓR*+θ H. Next we prove that a statistical generalized recurrent manifold with constant curvature is as same as a generalized recurrent manifold with respect to its Levi-Civita connection.
Also we show that a statistical generalized recurrent manifold is neither statistical semi-symmetric, nor statistical Ricci semi-symmetric. Finally we prove that in spite of the Riemannian manifold, a statistical generalized recurrent manifold is not statistical concircular recurrent.

Keywords


1. S. Amari and H. Nagaoka, Methods of information geometry, American Math. Soc. 191,
2000.
2. M. Aydin, A. Mihai and I. Mihai, Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature, Bulletin of Math. 7(2017), 155-166.
3. R.S.D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math. 10(12)(1979),
1508-1513.
4. H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato and M.H. Shahid, Sasakian statistical
manifolds, J. Geom. Phys. 117(2017), 179-186.
5. M.B. Kazemi and F. Raei, Recurrent and ϕ-recurrent curvature on mixed 3-Sasakian
manifolds, Novi Sad J. Math. 53(2)(2023), 1-8.
6. M.B. Kazemi and S. Salahvarzi, On statistical submersions from 3-Sasakian statistical
manifolds, Diff. Geom. Appl. 94(2024), 102-124.
7. S. Kobayashi and Y. Ohno, On a constant curvature statistical manifold, Inf. Geom.
5(1)(2022), 31-46.
8. B. Prasada and R.P.S. Yadava, A study on nearly recurrent generalized (k, µ)-space
forms, Filomat, 38(6)(2024), 2035-2043.
9. H.S. Ruse, On simply harmonic spaces, J. Lond. Math. Soc. 21(1946), 243-247.
10. A. Singh and K. Shyam, Generalized recurrent and generalized Ricci recurrent generalized
Sasakian space forms, Palestine J. Math. 9.2(2020), 866-873.
11. S. Uddin, E. Peyghan, L. Nourmohammadifar and R. Bossly, On Nearly Sasakian and
Nearly Kaehler Statistical Manifolds, Mathematics. 11(12)(2023), 1-19.