Journal of Finsler Geometry and its Applications Vol. 5, No. 2 (2024), pp 101-115 <https://doi.org/10.22098/jfga.2024.16014.1139>

On statistical generalized recurrent manifolds

Fatemeh Asali^a ^{iD} and Mohammad Baghe[r](#page-0-0) Kazemi Balgeshir^{a∗} ^aDepartment of Mathematics, University of Zanjan, P.B. 45371–38791 Zanjan, Iran E-mail: e.asali@znu.ac.ir E-mail: mbkazemi@znu.ac.ir

Abstract. In this paper, we introduce a statistical generalized recurrent manifold, which its statistical curvature tensor \mathcal{R}^* , satisfies the generalized recurrent condition $\nabla^* \mathcal{R}^* = \gamma \mathcal{R}^* + \theta H$. Next we prove that a statistical generalized recurrent manifold with constant statistical curvature is as same as a generalized recurrent manifold with respect to its Levi-Civita connection. Also we show that a statistical generalized recurrent manifold is neither statistical semisymmetric, nor statistical Ricci semi-symmetric. Finally we prove that in spite of the Riemannian manifold, a statistical generalized recurrent manifold is not statistical concircular recurrent.

Keywords: Statistical manifold, statistical generalized recurrent manifold, statistical generalized concirculary recurrent, statistical semi-symmetric.

1. Introduction

A statistical manifold is a Riemannian (semi-Riemannian) manifold $(Uⁿ, h)$ which admits dual connections ∇ and ∇^* with some conditions, such that each points of that are probability distribution [\[1\]](#page-14-0).

[∗]Corresponding Author

AMS 2020 Mathematics Subject Classification: 53B40, 53C30

This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0](https://creativecommons.org/licenses/by-nc/4.0/) International License.

Copyright \copyright 2024 The Author(s). Published by University of Mohaghegh Ardabili

 U is called a Riemannian generalized recurrent manifold with respect to Levi-Civita connection $\hat{\nabla}$, if the Riemannian curvature tensor $\hat{\mathcal{R}}_m$ satisfies

$$
(\hat{\nabla}_E \hat{\mathcal{R}m})(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \hat{\gamma}(E) \hat{\mathcal{R}m}(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

+ $\hat{\theta}(E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F}) - h(\mathcal{S}.\mathcal{I})h(\mathcal{B}, \mathcal{F})], (1.1)$

where $E, \mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}$ are vector fields on U, and $\hat{\gamma}$ and $\hat{\theta}$ are nowhere vanishing unique 1-forms, such that there exist vector fields ρ and $\tilde{\rho}$, we have $\hat{\gamma}(E)$ = $h(E, \rho)$ and $\hat{\theta}(E) = h(E, \tilde{\rho})$ for any $E \in \tau(U)$. For a Riemannian generalized recurrent manifold Equation [\(1.1\)](#page-1-0) can be written as

$$
(\hat{\nabla}_E \hat{\mathcal{R}})(\mathcal{S}, \mathcal{B}, \mathcal{I}) = \hat{\gamma}(E)\hat{\mathcal{R}}(\mathcal{S}, \mathcal{B})\mathcal{I}
$$

+ $\hat{\theta}(E)[h(\mathcal{B}, \mathcal{I})\mathcal{S} - h(\mathcal{S}, \mathcal{I})\mathcal{B}],$ (1.2)

where $\hat{\mathcal{R}m}(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = h(\hat{\mathcal{R}}(\mathcal{S}, \mathcal{B})\mathcal{I}, \mathcal{F}).$

This notion was introduced by Dubey in 1979 at first and then many authors used this definition in their articles [\[3,](#page-14-1) [8,](#page-14-2) [10\]](#page-14-3). If $\hat{\theta}(E) = 0$ holds for all vector fields in generalized recurrent manifold, then U is reduced to be a recurrent manifold $[5, 9]$ $[5, 9]$ $[5, 9]$.

In this paper, we introduce statistical generalized recurrent and statistical concirculary recurrent manifolds for $(Uⁿ, h, \nabla^*)$ and we prove that in spite of the Riemannian case, they are not equivalent.

This paper is organized as follows. In Section [2](#page-1-1) we review basic properties of statistical manifolds. In Section [3,](#page-3-0) we define statistical generalized recurrent, statistical concirculary recurrent, statistical semi-symmetric and statistical Ricci semi-symmetric manifolds. In section [4,](#page-7-0) we express the condition that 1-forms γ and θ can be closed. Also we prove that a statistical generalized recurrent manifold is neither statistical semi-symmetric, nor statistical Ricci semi-symmetric. Finally we show that a statistical generalized recurrent manifold is not statistical concircular recurrent.

2. Preliminaries

Throughout this paper, (U^n, h) denotes a smooth semi-Riemannian n dimensional manifold. We show the set of vector fields on U by $\tau(U)$.

Definition 2.1. [\[4\]](#page-14-6) (∇, h) is called a statistical structure on (U, h) if ∇ is an affine and torsion free connection and

$$
\left(\nabla_E h\right)(\mathcal{S}, \mathcal{B}) = \left(\nabla_{\mathcal{S}} h\right)(E, \mathcal{B}),\tag{2.1}
$$

holds $\forall S, B, E \in \tau(U)$.

Also, (U, ∇, h) is said to be a statistical manifold.

Moreover, an affine connection ∇^* is called a dual connection of ∇ with respect to h , such that

$$
Eh\left(S,\mathcal{B}\right) = h\left(\nabla_E S,\mathcal{B}\right) + h\left(S,\nabla_E^*\mathcal{B}\right). \tag{2.2}
$$

From the symmetry of h it can be verified that $(\nabla^*)^* = \nabla$ and by compatibility of $\hat{\nabla}$ with h and [\(2.1\)](#page-1-2) it holds $\hat{\nabla} = \frac{1}{2} (\nabla + \nabla^*)$.

Also, $\nabla = \nabla^*$ if and only if ∇ is the Levi-Civita connection of the metric h.

Remark 2.2. [\[6\]](#page-14-7) A (1,2)-tensor field for a statistical structure (∇, h) , is defined

$$
\mathcal{K}(E,\mathcal{S}) = \nabla_E \mathcal{S} - \hat{\nabla}_E \mathcal{S} = \frac{1}{2} (\nabla_E \mathcal{S} - \nabla_E^* \mathcal{S}),\tag{2.3}
$$

which K is symmetric and

$$
h\left(\mathcal{K}(E,\mathcal{S}),\mathcal{B}\right) = h\left(\mathcal{S},\mathcal{K}(E,\mathcal{B})\right). \tag{2.4}
$$

The statistical curvature tensor field with respect to ∇^* is defined in [\[11\]](#page-14-8) as,

$$
\mathcal{R}^*(\mathcal{S}, \mathcal{B})\mathcal{I} = \nabla^* \mathcal{S} \nabla^* \mathcal{B} \mathcal{I} - \nabla^* \mathcal{B} \nabla^* \mathcal{S} \mathcal{I} - \nabla^* [\mathcal{S}, \mathcal{B}] \mathcal{I},\tag{2.5}
$$

and we denote

$$
\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = h(\mathcal{R}^*(\mathcal{S}, \mathcal{B})\mathcal{I}, \mathcal{F}),
$$
\n(2.6)

in which

$$
h\left(\mathcal{R}^*\left(\mathcal{S},\mathcal{B}\right)\mathcal{I},\mathcal{F}\right)=-h\left(\mathcal{R}\left(\mathcal{S},\mathcal{B}\right)\mathcal{F},\mathcal{I}\right),\tag{2.7}
$$

holds on statistical manifolds. The statistical curvature tensor field with respect to ∇ is defined similarly and is denoted by \mathcal{R} .

If there exist a real constant number a where \mathcal{R}^* satisfies

$$
\mathcal{R}^*(\mathcal{S}, \mathcal{B}) \mathcal{I} = a \{ h(\mathcal{B}, \mathcal{I}) \mathcal{S} - h(\mathcal{S}, \mathcal{I}) \mathcal{B} \},
$$
\n(2.8)

then (U^n, h) is said to be constant statistical curvature [\[2\]](#page-14-9).

If U be a statistical manifold with constant statistical curvature a , then by virtue of (2.7) ,

$$
\mathcal{R}^* = \mathcal{R},\tag{2.9}
$$

and

$$
\mathcal{R}c^*(\mathcal{B},\mathcal{I}) = a(n-1)h(\mathcal{B},\mathcal{I}),\tag{2.10}
$$

holds for all vector fields \mathcal{B}, \mathcal{I} , where $\mathcal{R}c^*(\mathcal{B}, \mathcal{I})$ is the trace of the $\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})$ with respect to S , $\mathcal F$ and is called statistical Ricci tensor.

Remark 2.3. [\[7\]](#page-14-10) The condition $\mathcal{R}c = \mathcal{R}c^*$ in a statistical manifold implies

$$
\mathcal{R}c^*(\mathcal{B},\mathcal{I})=\mathcal{R}c^*(\mathcal{I},\mathcal{B}).
$$

But it is not symmetric in general.

From Equation [\(2.9\)](#page-2-1), we get $\mathcal{R}c = \mathcal{R}c^*$ for the statistical manifold with constant statistical curvature. So from Remark $2.3 \nRc^*$ $2.3 \nRc^*$ is symmetric for the statistical manifold with constant statistical curvature.

Also from Equation (2.10) , we have

$$
tr_h \mathcal{R}c^* = an(n-1),\tag{2.11}
$$

where $tr_h(\mathcal{R}c^*)$ is trace of the $\mathcal{R}c^*$ and is called statistical scalar curvature.

3. Statistical generalized recurrent manifold

Now we define a statistical generalized recurrent manifold.

Definition 3.1. We say (U, h) is a statistical generalized recurrent manifold, if its statistical curvature tensor Rm[∗] satisfies

$$
(\nabla_E^* \mathcal{R}m^*)(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \gamma(E)\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

+ $\theta(E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F}) - h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})].$ (3.1)

 $\forall S, \mathcal{B}, \mathcal{I}, \mathcal{F}, E \in \tau(U)$, where γ and θ are nowhere vanishing unique 1-forms, such that there exist vector fields ρ and $\tilde{\rho}$, in which $\gamma(E) = h(E, \rho)$ and $\theta(E) =$ $h(E, \tilde{\rho})$, for any $E \in \tau(U)$.

If $\theta(E) = 0$ holds for all vector fields in statistical generalized recurrent manifold, then we say U is a statistical recurrent manifold. Also if $\gamma(E)$ = $\theta(E) = 0$ holds for all vector fields in statistical generalized recurrent manifold, then we say U is a statistical locally-symmetric.

Equations (1.1) and (1.2) are equivalent for the Riemannian generalized recurrent manifold. In spite of the Riemannian generalized recurrent manifold, Equation [\(3.1\)](#page-3-1) for the statistical generalized recurrent manifold is not equivalent to

$$
(\nabla_E^* \mathcal{R}^*)(\mathcal{S}, \mathcal{B}, \mathcal{I}) = \gamma(E) \mathcal{R}^*(\mathcal{S}, \mathcal{B}) \mathcal{I}
$$

+ $\theta(E)[h(\mathcal{B}, \mathcal{I})\mathcal{S} - h(\mathcal{S}, \mathcal{I})\mathcal{B}].$ (3.2)

So we can state the following Remark.

Remark 3.2. Let (U, h) be a statistical manifold in which

$$
(\nabla_E^* \mathcal{R}^*)(\mathcal{S}, \mathcal{B}, \mathcal{I}) = \gamma(E) \mathcal{R}^*(\mathcal{S}, \mathcal{B}) \mathcal{I}
$$

+
$$
\theta(E)[h(\mathcal{B}, \mathcal{I})\mathcal{S} - h(\mathcal{S}, \mathcal{I})\mathcal{B}],
$$
(3.3)

then we have

$$
(\nabla_E^*{\mathcal R} m^*)(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F})\quad =\quad \gamma(E){\mathcal R} m^*(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F})
$$

+
$$
\theta(E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F}) - h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})]
$$

+ $2\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{K}(E, \mathcal{F})),$ (3.4)

where K is the statistical (1,2)-tensor field in [\(2.3\)](#page-2-4). Also if $\mathcal{K}(E, \mathcal{F}) = 0$ in Equation [\(3.4\)](#page-3-2), the manifold reduce to be a Riemannian generalized recurrent.

Proof. Let Equation [\(3.3\)](#page-3-3) holds for a statistical manifold. Since

$$
(\nabla_E^* \mathcal{R}m^*)(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \nabla_E^* h(\mathcal{R}^*(\mathcal{S}, \mathcal{B})\mathcal{I}, \mathcal{F}) - h(\mathcal{R}^*(\nabla_E^* \mathcal{S}, \mathcal{B})\mathcal{I}, \mathcal{F})
$$

\n
$$
- h(\mathcal{R}^*(\mathcal{S}, \nabla_E^* \mathcal{B})\mathcal{I}, \mathcal{F}) - h(\mathcal{R}^*(\mathcal{S}, \mathcal{B})\nabla_E^* \mathcal{I}, \mathcal{F})
$$

\n
$$
- h(\mathcal{R}^*(\mathcal{S}, \mathcal{B})\mathcal{I}, \nabla_E^* \mathcal{F}), \qquad (3.5)
$$

in which

$$
\nabla_{E}^{*}h(\mathcal{R}^{*}(\mathcal{S},\mathcal{B})\mathcal{I},\mathcal{F}) = h(\nabla_{E}^{*}\mathcal{R}^{*}(\mathcal{S},\mathcal{B})\mathcal{I},\mathcal{F})
$$

$$
+ h(\mathcal{R}^{*}(\mathcal{S},\mathcal{B})\mathcal{I},\nabla_{E}\mathcal{F}). \tag{3.6}
$$

By replacing (3.6) in (3.5) we infer

$$
(\nabla_E^* \mathcal{R}m^*)(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = h((\nabla_E^* \mathcal{R}^*)(\mathcal{S}, \mathcal{B}, \mathcal{I}), \mathcal{F})
$$

+ $2h(\mathcal{R}^*(\mathcal{S}, \mathcal{B})\mathcal{I}, \mathcal{K}(E, \mathcal{F})).$ (3.7)

By replacing (3.3) in (3.7) we get (3.4) .

Also if $\mathcal{K}(E,\mathcal{F})=0$ in Equation [\(3.4\)](#page-3-2), then from [\(2.3\)](#page-2-4) we have $\nabla = \nabla^*$. Therefore the manifold reduce to be a Riemannian generalized recurrent. \Box

Theorem 3.3. If Equation (3.2) holds for a statistical manifold, then we have

$$
(\nabla_E^* \mathcal{R})(\mathcal{S}, \mathcal{B}, \mathcal{F}) = \gamma(E) \mathcal{R}(\mathcal{S}, \mathcal{B}) \mathcal{F} + \theta(E)[h(\mathcal{B}, \mathcal{F}) \mathcal{S} - h(\mathcal{S}, \mathcal{F}) \mathcal{B}]
$$

+
$$
2\mathcal{R}(\mathcal{S}, \mathcal{B})\mathcal{K}(E, \mathcal{F}) - 2\mathcal{K}(E, \mathcal{R}(\mathcal{S}, \mathcal{B})\mathcal{F}).
$$
 (3.8)

Proof. From (2.7) we get

$$
h((\nabla_{E}^{*} \mathcal{R}^{*})(\mathcal{S}, \mathcal{B}, \mathcal{I}), \mathcal{F}) = h(\nabla_{E}^{*} \mathcal{R}^{*}(\mathcal{S}, \mathcal{B})\mathcal{I}, \mathcal{F})
$$

+
$$
h(\mathcal{R}(\nabla_{E}^{*} \mathcal{S}, \mathcal{B})\mathcal{F}, \mathcal{I}) + h(\mathcal{R}(\mathcal{S}, \nabla_{E}^{*} \mathcal{B})\mathcal{F}, \mathcal{I})
$$

+
$$
h(\mathcal{R}(\mathcal{S}, \mathcal{B})\mathcal{F}, \nabla_{E}^{*}\mathcal{I}), \qquad (3.9)
$$

in which

$$
h(\nabla_E^* \mathcal{R}^*(\mathcal{S}, \mathcal{B}) \mathcal{I}, \mathcal{F}) = h(\mathcal{R}(\mathcal{S}, \mathcal{B}) \nabla_E \mathcal{F}, \mathcal{I})
$$

$$
- \nabla_E^* h(\mathcal{R}(\mathcal{S}, \mathcal{B}) \mathcal{F}, \mathcal{I}), \qquad (3.10)
$$

and

$$
\nabla_{E}^{*}h(\mathcal{R}(\mathcal{S},\mathcal{B})\mathcal{F},\mathcal{I}) = h(\nabla_{E}^{*}\mathcal{R}(\mathcal{S},\mathcal{B})\mathcal{F},\mathcal{I})
$$

$$
+ h(\mathcal{R}(\mathcal{S},\mathcal{B})\mathcal{F},\nabla_{E}\mathcal{I}). \tag{3.11}
$$

From Equations (3.10) and (3.11) we infer,

$$
h(\nabla_E^* \mathcal{R}^*(\mathcal{S}, \mathcal{B}) \mathcal{I}, \mathcal{F}) = h(\mathcal{R}(\mathcal{S}, \mathcal{B}) \nabla_E \mathcal{F}, \mathcal{I}) - h(\nabla_E^* \mathcal{R}(\mathcal{S}, \mathcal{B}) \mathcal{F}, \mathcal{I})
$$

$$
- h(\mathcal{R}(\mathcal{S}, \mathcal{B}) \mathcal{F}, \nabla_E \mathcal{I}). \tag{3.12}
$$

Hence, by virtue of (2.3) and replacing (3.12) in (3.9) , we obtain

$$
h((\nabla_E^*\mathcal{R}^*)(\mathcal{S},\mathcal{B},\mathcal{I}),\mathcal{F}) = -h((\nabla_E^*\mathcal{R})(\mathcal{S},\mathcal{B},\mathcal{F}),\mathcal{I}) + 2h(\mathcal{R}(\mathcal{S},\mathcal{B})\mathcal{K}(E,\mathcal{F}),\mathcal{I})
$$

$$
- 2h(\mathcal{R}(\mathcal{S}, \mathcal{B})\mathcal{F}, \mathcal{K}(E, \mathcal{I}). \tag{3.13}
$$

By replacing (3.2) in (3.13) , we get

$$
h((\nabla_E^* \mathcal{R})(\mathcal{S}, \mathcal{B})\mathcal{F}, \mathcal{I}) = -\{\gamma(E)\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

+ $\theta(E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F}) - h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})]\}$
+ $2\mathcal{R}m(\mathcal{S}, \mathcal{B}, \mathcal{K}(E, \mathcal{F}), \mathcal{I})$
- $2\mathcal{R}m(\mathcal{S}, \mathcal{B}, \mathcal{F}, \mathcal{K}(E, \mathcal{I})).$ (3.14)

Again by replacing (2.7) in (3.14) , we conclude (3.8) .

Corollary 3.4. If Equation [\(3.2\)](#page-3-4) holds for a statistical manifold with constant statistical curvature, then we have $\nabla = \nabla^*$.

Proof. By virtue of (2.9) , and replacing (3.2) in (3.8) we conclude

$$
2\mathcal{R}(\mathcal{S},\mathcal{B})\mathcal{K}(E,\mathcal{F}) - 2\mathcal{K}(E,\mathcal{R}(\mathcal{S},\mathcal{B})\mathcal{F}) = 0.
$$
 (3.15)

Hence, from (2.8) , we get

$$
h(\mathcal{B},\mathcal{K}(E,\mathcal{F}))\mathcal{S}-h(\mathcal{S},\mathcal{K}(E,\mathcal{F}))\mathcal{B} \quad - \quad \mathcal{K}(E,h(\mathcal{F},\mathcal{B})\mathcal{S})
$$

+
$$
\mathcal{K}(E, h(\mathcal{F}, \mathcal{S})\mathcal{B}) = 0.
$$
 (3.16)

Equation (2.4) implies,

$$
h(\mathcal{K}(E,\mathcal{F}),\mathcal{B})\mathcal{S} = h(\mathcal{K}(E,\mathcal{F}),\mathcal{S})\mathcal{B}.
$$
\n(3.17)

By replacing (3.17) in (3.16) we find

$$
\mathcal{K}(E, h(\mathcal{F}, \mathcal{S})\mathcal{B}) = \mathcal{K}(E, h(\mathcal{F}, \mathcal{B})\mathcal{S}).
$$
\n(3.18)

By account of (2.3) , $\nabla = \nabla^*$. . □

From Corollary [3.4,](#page-5-6) we conclude the statistical generalized recurrent manifold with constant statistical curvature is as same as the Riemannian generalized recurrent manifold with respect to its Levi-Civita connection.

Lemma 3.5. (U, h) is statistical generalized recurrent, if and only if Rm is statistical generalized recurrent with respect to ∇^* .

Proof. Let (U, h) is a statistical generalized recurrent. From (2.7) , we have

$$
(\nabla_E^* \mathcal{R}m)(\mathcal{S}, \mathcal{B}, \mathcal{F}, \mathcal{I}) = -(\nabla_E^* \mathcal{R}m^*)(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

\n
$$
= -\{\gamma(E)\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

\n
$$
+ \theta(E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F}) - h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})]\}
$$

\n
$$
= \gamma(E)\mathcal{R}m(\mathcal{S}, \mathcal{B}, \mathcal{F}, \mathcal{I})
$$

\n
$$
+ \theta(E)[h(\mathcal{B}, \mathcal{F})h(\mathcal{S}, \mathcal{I}) - h(\mathcal{S}, \mathcal{F})h(\mathcal{B}, \mathcal{I})].
$$

Therefore, $\mathcal{R}m$ is generalized recurrent with respect to ∇^* . .
. □

Definition 3.6. Let (U^n, h) be a statistical non-flat manifold in which $n \geq 3$. We put

$$
\tilde{C}^*(S, \mathcal{B})\mathcal{I} = \mathcal{R}^*(S, \mathcal{B})\mathcal{I}
$$

$$
- \frac{tr_h(\mathcal{R}c^*)}{n(n-1)}[h(\mathcal{B}, \mathcal{I})S - h(S, \mathcal{I})\mathcal{B}], \qquad (3.19)
$$

and we call that a statistical concircular curvature tensor field for a pair (∇^*, h) and we set

$$
\tilde{Cr}^*(S, \mathcal{B}, \mathcal{I}, \mathcal{F}) = h(\tilde{C}^*(S, \mathcal{B})\mathcal{I}, \mathcal{F}).
$$
\n(3.20)

Definition 3.7. We say (U, h) is a statistical concirculary recurrent manifold if for its statistical concircular curvature tensor field \tilde{Cr}^* we have,

$$
(\nabla_E^* \tilde{\mathcal{C}r^*})(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \nu(E) \tilde{\mathcal{C}r^*}(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}). \tag{3.21}
$$

for all vector fields $\forall S, \mathcal{B}, \mathcal{I}, \mathcal{F}, E \in \tau(U)$, where ν is a non-vanishing 1-form such that for a vector field λ , we have $\nu(E) = h(E, \lambda)$ for any $E \in \tau(U)$.

If $\tilde{\mathcal{C}}^* = 0$ holds in Equation [\(3.19\)](#page-6-1), then U is of constant statistical curvature. So, the statistical concircular curvature tensor act as a test of a failure of statistical manifold to be with constant statistical curvature.

Definition 3.8. We say (U, h) is statistical semi-symmetric if

$$
\mathcal{R}^* \cdot \mathcal{R}m^* = 0,\tag{3.22}
$$

where $\forall S, \mathcal{B}, \mathcal{I}, \mathcal{F}, E, \mathcal{A} \in \tau(U)$,

$$
\mathcal{R}^* \cdot \mathcal{R}m^* = (\nabla_E^* \nabla_A^* \mathcal{R}m^*) (\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) - (\nabla_A^* \nabla_E^* \mathcal{R}m^*) (\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

$$
- \left(\nabla^*_{[E,A]} \mathcal{R}m^*\right)(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}). \tag{3.23}
$$

Definition 3.9. We say (U, h) is statistical Ricci semi-symmetric if

$$
\mathcal{R}^* \cdot \mathcal{R}c^* = 0,\tag{3.24}
$$

where $\forall \mathcal{B}, \mathcal{I}, \mathcal{A}, E \in \tau(U)$,

$$
\mathcal{R}^* \cdot \mathcal{R}c^* = (\nabla_E^* \nabla_A^* \mathcal{R}c^*) (\mathcal{B}, \mathcal{I}) - (\nabla_A^* \nabla_E^* \mathcal{R}c^*) (\mathcal{B}, \mathcal{I})
$$

-
$$
(\nabla_{[E, \mathcal{A}]}^* \mathcal{R}c^*) (\mathcal{B}, \mathcal{I}).
$$
 (3.25)

4. Main results

Let U be a statistical generalized recurrent manifold. Taking contraction over S and F of Equation (3.1) , we get

$$
\left(\nabla_E^* \mathcal{R}c^*\right)(\mathcal{B}, \mathcal{I}) = \gamma(E) \mathcal{R}c^*(\mathcal{B}, \mathcal{I}) + (n-1)\theta(E)h(\mathcal{B}, \mathcal{I}).\tag{4.1}
$$

Again taking contraction over β and $\mathcal I$ of Equation [\(4.1\)](#page-7-1), we get

$$
E(tr_h \mathcal{R}c^*) = \gamma(E))tr_h \mathcal{R}c^* + n(n-1)\theta(E). \tag{4.2}
$$

Theorem 4.1. Let (U, h) be a statistical generalized recurrent manifold. 1forms γ and θ can not be both closed, unless $\gamma(E)\theta(S) = \gamma(S)\theta(E)$ holds on U.

Proof. Let (U, h) be a statistical generalized recurrent. Taking covariant derivative of [\(4.2\)](#page-7-2) we obtain

$$
S(E(tr_h \mathcal{R}c^*)) = (\nabla_S^*\gamma)(E)tr_h \mathcal{R}c^* + \gamma(E)S(tr_h \mathcal{R}c^*))
$$

+ $n(n-1)(\nabla_S^*\theta)(E) = (\nabla_S^*\gamma)(E)tr_h \mathcal{R}c^*$
+ $n(n-1)[\gamma(E)\theta(S) + (\nabla_S^*\theta)(E)].$ (4.3)

Also,

$$
E(\mathcal{S}(tr_h \mathcal{R}c^*)) = (\nabla_E^* \gamma)(\mathcal{S}) tr_h \mathcal{R}c^*
$$

+
$$
n(n-1)[\gamma(\mathcal{S})\theta(E) + (\nabla_E^*\theta)(\mathcal{S})].
$$
 (4.4)

So, we obtain

$$
[(\nabla^*_{\mathcal{S}} \gamma)(E) - (\nabla^*_{E} \gamma)(\mathcal{S})] tr_h \mathcal{R} c^*
$$

$$
+n(n-1)[(\nabla_{\mathcal{S}}^*\theta)(E)-(\nabla_E^*\theta)(\mathcal{S})+\gamma(E)\theta(\mathcal{S})-\gamma(\mathcal{S})\theta(E)]=0.
$$
 (4.5)

Hence, we get

$$
[(\nabla_{\mathcal{S}}^*\gamma)(E) - (\nabla_E^*\gamma)(\mathcal{S})]tr_h \mathcal{R}c^* + n(n-1)[(\nabla_{\mathcal{S}}^*\theta)(E) - (\nabla_E^*\theta)(\mathcal{S})]
$$

= $n(1-n)[\gamma(E)\theta(\mathcal{S}) - \gamma(\mathcal{S})\theta(E)].$ (4.6)

Now we state a special case of Theorem 4.1 in which U is statistical generalized recurrent with constant statistical scalar curvature.

Theorem 4.2. The 1-form γ in statistical generalized recurrent manifold with non-zero constant statistical scalar curvature a is closed if and only if the 1 form θ is closed.

Proof. Let (U, h) be a statistical generalized recurrent manifold with constant scalar curvature. From (4.2) we obtain

$$
\gamma(E) \operatorname{tr}_h \mathcal{R}c^* + n(n-1)\theta(E) = 0. \tag{4.7}
$$

Taking covariant derivative of [\(4.7\)](#page-8-0) we get

$$
(\nabla^*_{\mathcal{S}}\gamma)(E)tr_h\mathcal{R}c^* + n(n-1)(\nabla^*_{\mathcal{S}}\theta)(E) = 0.
$$

Also,

$$
(\nabla_E^*\gamma)(\mathcal{S})\mathrm{tr}_h \mathcal{R}c^* + n(n-1)(\nabla_E^*\theta)(\mathcal{S}) = 0.
$$

Hence, we obtain

$$
[(\nabla_{\mathcal{S}}^*\gamma)(E) - (\nabla_E^*\gamma)(\mathcal{S})]tr_h\mathcal{R}c^* + n(n-1)[(\nabla_{\mathcal{S}}^*\theta)(E) - (\nabla_E^*\theta)(\mathcal{S})] = 0.
$$

Therefore the 1-form γ is closed if and only if the 1-form θ is closed.

Lemma 4.3. [\[7\]](#page-14-10) Let (U, h) be a statistical manifold. Then

$$
\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \hat{\mathcal{R}}m(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) + h((\hat{\nabla}_{\mathcal{B}}\mathcal{K})(\mathcal{S}, \mathcal{I}), \mathcal{F})
$$

$$
- h((\hat{\nabla}_{\mathcal{S}}\mathcal{K})(\mathcal{B},\mathcal{I}),\mathcal{F}) - h([\mathcal{K}_{\mathcal{B}},\mathcal{K}_{\mathcal{S}}]\mathcal{I},\mathcal{F}), \qquad (4.8)
$$

$$
\frac{1}{2}\mathcal{R}m(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F}) + \frac{1}{2}\mathcal{R}m^*(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F}) = \mathcal{R}m(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F})
$$

+
$$
h([\mathcal{K}_{\mathcal{S}}, \mathcal{K}_{\mathcal{B}}] \mathcal{I}, \mathcal{F}),
$$
 (4.9)

□

110 Fatemeh Asali and Mohammad Bagher Kazemi Balgeshir

$$
\frac{1}{2}\mathcal{R}m(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F}) - \frac{1}{2}\mathcal{R}m^*(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F}) = h((\hat{\nabla}_{\mathcal{S}}\mathcal{K})(\mathcal{B},\mathcal{I}),\mathcal{F})
$$

$$
- h((\hat{\nabla}_{\mathcal{B}}\mathcal{K})(\mathcal{S},\mathcal{I}),\mathcal{F}). \quad (4.10)
$$

Lemma 4.4. Let (U, h) be statistical generalized recurrent.

(1) If
$$
(\hat{\nabla}_{\mathcal{S}}\mathcal{K})(\mathcal{B},\mathcal{I}) = (\hat{\nabla}_{\mathcal{B}}\mathcal{K})(\mathcal{S},\mathcal{I})
$$
, then
\n $(\nabla_{E}^{*}\hat{\mathcal{R}m})(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F}) = \gamma(E)\{\hat{\mathcal{R}m}(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F}) + h([\mathcal{K}_{\mathcal{S}},\mathcal{K}_{\mathcal{B}}]\mathcal{I},\mathcal{F})\}$
\n $+ \theta(E)[h(\mathcal{B},\mathcal{I})h(\mathcal{S},\mathcal{F}) - h(\mathcal{S},\mathcal{I})h(\mathcal{B},\mathcal{F})]$

+
$$
(\nabla_E^* h)([\mathcal{K}_{\mathcal{S}}, \mathcal{K}_{\mathcal{B}}] \mathcal{I}, \mathcal{F}).
$$
 (4.11)

(2) If $(\hat{\nabla}_{\mathcal{B}}\mathcal{K})(\mathcal{S},\mathcal{I}) - (\hat{\nabla}_{\mathcal{S}}\mathcal{K})(\mathcal{B},\mathcal{I}) = [\mathcal{K}_{\mathcal{B}},\mathcal{K}_{\mathcal{S}}]\mathcal{I}$, then $\hat{\mathcal{R}m}$ is statistical generalized recurrent with respect to ∇^* and

$$
(\nabla_E^* \mathcal{R}m)(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \gamma(E)\{\mathcal{R}m(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) - 2h([\mathcal{K}_{\mathcal{S}}, \mathcal{K}_{\mathcal{B}}]\mathcal{I}, \mathcal{F})\}
$$

+ $\theta(E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F}) - h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})]$
+ $2(\nabla_E^* h)[[\mathcal{K}_{\mathcal{S}}, \mathcal{K}_{\mathcal{B}}]\mathcal{I}, \mathcal{F}).$ (4.12)

Proof. Let U be a statistical generalized recurrent manifold. If

$$
(\hat{\nabla}_{\mathcal{S}}\mathcal{K})(\mathcal{B},\mathcal{I})=(\hat{\nabla}_{\mathcal{B}}\mathcal{K})(\mathcal{S},\mathcal{I}),
$$

then from (4.8) we get

$$
\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \mathcal{R}m(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) + h([\mathcal{K}_{\mathcal{S}}, \mathcal{K}_{\mathcal{B}}]\mathcal{I}, \mathcal{F}).
$$
(4.13)

Hence, we obtain

$$
(\nabla_E^* \hat{\mathcal{R}m})(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) + (\nabla_E^* h)([\mathcal{K}_\mathcal{S}, \mathcal{K}_\mathcal{B}] \mathcal{I}, \mathcal{F})
$$

$$
= \gamma(E)\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) + \theta(E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F}) - h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})].
$$
 (4.14)

By replacing Equation (4.13) in the last equality of (4.14) , and by direct computation we obtain [\(4.11\)](#page-9-2).

If $(\hat{\nabla}_{\mathcal{B}}\mathcal{K})(\mathcal{S},\mathcal{I})-(\hat{\nabla}_{\mathcal{S}}\mathcal{K})(\mathcal{B},\mathcal{I})=[\mathcal{K}_{\mathcal{B}},\mathcal{K}_{\mathcal{S}}]\mathcal{I}$, then from [\(4.8\)](#page-8-1) and [\(4.10\)](#page-9-3) we get $\hat{\mathcal{R}m}(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \mathcal{R}m(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})$

$$
- 2h([\mathcal{K}_{\mathcal{S}}, \mathcal{K}_{\mathcal{B}}] \mathcal{I}, \mathcal{F}). \tag{4.15}
$$

Since, U is statistical generalized recurrent, so from the first equality of (4.15) we obtain

$$
(\nabla_E^* \hat{\mathcal{R}}m)(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \gamma(E) \hat{\mathcal{R}m}(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) + \theta(E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F})]
$$

$$
= h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})].
$$

Also, from the last equality of [\(4.15\)](#page-9-4) we get

$$
(\nabla_E^*{\mathcal R} m)({\mathcal S},{\mathcal B},{\mathcal I},{\mathcal F})-2(\nabla_E^*h)([{\mathcal K}_{\mathcal S},{\mathcal K}_{\mathcal B}]{\mathcal I},{\mathcal F})
$$

$$
= \gamma(E)\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) + \theta(E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F}) - h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})].
$$
 (4.16)

By chosing $\mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \mathcal{R}m(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) - 2h([\mathcal{K}_{\mathcal{S}}, \mathcal{K}_{\mathcal{B}}]\mathcal{I}, \mathcal{F})$, in the last equality of [\(4.16\)](#page-10-0), and direct computation we obtain [\(4.12\)](#page-9-5). \Box

Theorem 4.5. Let (U, h) be statistical generalized recurrent. Then, U is not statistical semi-symmetric.

Proof. Let U be statistical generalized recurrent. By virtue of (3.1) we obtain, $(\nabla^*_{\mathcal{A}} \nabla^*_{E} \mathcal{R}m^*) (\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \mathcal{A}(\gamma(E)) \mathcal{R}m^* (\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})$

- $+ \gamma(E) (\nabla^*_{\mathcal{A}} \mathcal{R} m^*) (\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})$ + $\mathcal{A}(\theta(E))[h(\mathcal{B},\mathcal{I})h(\mathcal{S},\mathcal{F})-h(\mathcal{S},\mathcal{I})h(\mathcal{B},\mathcal{F})]$ + $\theta(E)[h(\mathcal{B},\mathcal{I})(\nabla_{\mathcal{A}}^*h)(\mathcal{S},\mathcal{F})]$ + $h(S, \mathcal{F})(\nabla_A^*h)(\mathcal{B}, \mathcal{I})$ $-h(S,\mathcal{I})(\nabla^*_{\mathcal{A}}h)(\mathcal{B},\mathcal{F})-h(\mathcal{B},\mathcal{F})(\nabla^*_{\mathcal{A}}h)(\mathcal{S},\mathcal{I})]$ $= \mathcal{A}(\gamma(E)) \mathcal{R}m^*(\mathcal{A}, \mathcal{B}, \mathcal{I}, \mathcal{F})$ $+ \gamma(E) \gamma(A) \mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})$ + $[\gamma(E)\theta(\mathcal{A}) + \mathcal{A}(\theta(E))][h(\mathcal{B},\mathcal{I})h(\mathcal{S},\mathcal{F})]$ $- h(S, \mathcal{I})h(\mathcal{B}, \mathcal{F})$]
- + $\theta(E)[h(\mathcal{B},\mathcal{I})(\nabla_{\mathcal{A}}^*h)(\mathcal{S},\mathcal{F})]$
- + $h(S, \mathcal{F})(\nabla_A^*h)(\mathcal{B}, \mathcal{I})$
- $h(\mathcal{S}, \mathcal{I})(\nabla^*_{\mathcal{A}}h)(\mathcal{B}, \mathcal{F})$

$$
- h(\mathcal{B}, \mathcal{F})(\nabla_{\mathcal{A}}^* h)(\mathcal{S}, \mathcal{I})]. \tag{4.17}
$$

$$
(\nabla_{E}^* \nabla_{\mathcal{A}}^* \mathcal{R} m^*) (\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = E(\gamma(\mathcal{A})) \mathcal{R} m^* (\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

+
$$
\gamma(A)\gamma(E)\mathcal{R}m^*(S, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

\n+ $[\gamma(A)\theta(E) + E(\theta(A))][h(\mathcal{B}, \mathcal{I})h(S, \mathcal{F})$
\n- $h(S, \mathcal{I})h(\mathcal{B}, \mathcal{F})]$
\n+ $\theta(A)[h(\mathcal{B}, \mathcal{I})(\nabla_{E}^{*}h)(S, \mathcal{F})$
\n+ $h(S, \mathcal{F})(\nabla_{E}^{*}h)(\mathcal{B}, \mathcal{I})$
\n- $h(S, \mathcal{I})(\nabla_{E}^{*}h)(\mathcal{B}, \mathcal{F})$
\n- $h(\mathcal{B}, \mathcal{F})(\nabla_{E}^{*}h)(S, \mathcal{I})],$ (4.18)

and

$$
\left(\nabla^*_{[A,E]} \mathcal{R}m^*\right)(A,\mathcal{B},\mathcal{I},\mathcal{F}) = \gamma([\mathcal{A},E]) \mathcal{R}m^*(\mathcal{S},\mathcal{B},\mathcal{I},\mathcal{F})
$$

$$
+ \theta([\mathcal{A},E])[h(\mathcal{B},\mathcal{I})h(\mathcal{S},\mathcal{F})]
$$

$$
- h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})]. \tag{4.19}
$$

So, by virtue of [\(3.23\)](#page-7-4), Equations [\(4.17\)](#page-10-1), [\(4.18\)](#page-11-0) and [\(4.19\)](#page-11-1), imply $(\mathcal{R}^*(\mathcal{A}, E) \cdot \mathcal{R}m^*)(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F}) = 2d\gamma(\mathcal{A}, E) \mathcal{R}m^*(\mathcal{S}, \mathcal{B}, \mathcal{I}, \mathcal{F})$

> + $2d\theta(\mathcal{A}, E)[h(\mathcal{B}, \mathcal{I})h(\mathcal{S}, \mathcal{F}) - h(\mathcal{S}, \mathcal{I})h(\mathcal{B}, \mathcal{F})].$ + $[\gamma(E)\theta(\mathcal{A}) - \gamma(\mathcal{A})\theta(E)][h(\mathcal{B},\mathcal{I})h(\mathcal{S},\mathcal{F})]$ $- h(S, \mathcal{I})h(\mathcal{B}, \mathcal{F})].$ + $\theta(E)[h(\mathcal{B},\mathcal{I})(\nabla_{\mathcal{A}}^*h)(\mathcal{S},\mathcal{F})]$ + $h(S,\mathcal{F})(\nabla_{\mathcal{A}}^*h)(\mathcal{B},\mathcal{I})$

Also,

$$
- h(\mathcal{S}, \mathcal{I})(\nabla_{\mathcal{A}}^* h)(\mathcal{B}, \mathcal{F}) - h(\mathcal{B}, \mathcal{F})(\nabla_{\mathcal{A}}^* h)(\mathcal{S}, \mathcal{I})]
$$

$$
- \theta(\mathcal{A})[h(\mathcal{B}, \mathcal{I})(\nabla_{\mathcal{E}}^* h)(\mathcal{S}, \mathcal{F}) + h(\mathcal{S}, \mathcal{F})(\nabla_{\mathcal{E}}^* h)(\mathcal{B}, \mathcal{I})
$$

$$
- h(\mathcal{S}, \mathcal{I})(\nabla_{\mathcal{E}}^* h)(\mathcal{B}, \mathcal{F})
$$

$$
- h(\mathcal{B}, \mathcal{F})(\nabla_{\mathcal{E}}^* h)(\mathcal{S}, \mathcal{I})].
$$

This completes the proof. $\hfill \square$

Theorem 4.6. Let (U^n, h) be a statistical generalized recurrent manifold. Then we have

$$
(\mathcal{R}^*(\mathcal{A}, E) \cdot \mathcal{R}c^*)(\mathcal{B}, \mathcal{I}) = 2d\gamma(\mathcal{A}, E)\mathcal{R}c^*(\mathcal{B}, \mathcal{I}) + (2n - 2)d\theta(\mathcal{A}, E)h(\mathcal{B}, \mathcal{I})
$$

$$
+ (n - 1)\{[\gamma(E)\theta(\mathcal{A}) - \gamma(\mathcal{A})\theta(E)][h(\mathcal{B}, \mathcal{I})] + \theta(E)(\nabla_{\mathcal{A}}^*h)(\mathcal{B}, \mathcal{I}) - \theta(\mathcal{A})(\nabla_{E}^*h)(\mathcal{B}, \mathcal{I})\}. \tag{4.20}
$$

 $\forall\ \mathcal{B},\mathcal{I},E,\mathcal{A}\in\tau(U),$

Proof. Let U be a statistical generalized recurrent manifold. By virtue of Equation (4.1) , we obtain

$$
(\nabla_A^* \nabla_E^* \mathcal{R}c^*)(\mathcal{B}, \mathcal{I}) = \gamma(E) (\nabla_A^* \mathcal{R}c^*)(\mathcal{B}, \mathcal{I}) + \mathcal{A}(\gamma(E)) \mathcal{R}c^*(\mathcal{B}, \mathcal{I})
$$

+
$$
(n-1) \{ \mathcal{A}(\theta(E)) h(\mathcal{B}, \mathcal{I}) + \theta(E) (\nabla_A^* h)(\mathcal{B}, \mathcal{I}) \}
$$

=
$$
\gamma(E) \gamma(\mathcal{A}) \mathcal{R}c^*(\mathcal{B}, \mathcal{I}) + \mathcal{A}(\gamma(E)) \mathcal{R}c^*(\mathcal{B}, \mathcal{I})
$$

+
$$
(n-1) \{ [\gamma(E) \theta(\mathcal{A}) + \mathcal{A}(\theta(E))] h(\mathcal{B}, \mathcal{I})
$$

+
$$
\theta(E) (\nabla_A^* h)(\mathcal{B}, \mathcal{I}) \}, \qquad (4.21)
$$

also,

$$
(\nabla_E^* \nabla_A^* \mathcal{R}c^*)(\mathcal{B}, \mathcal{I}) = \gamma(\mathcal{A})\gamma(E)\mathcal{R}c^*(\mathcal{B}, \mathcal{I}) + (n-1)\{[\gamma(\mathcal{A})\theta(E) + E(\theta(\mathcal{A}))]h(\mathcal{B}, \mathcal{I}) + \theta(\mathcal{A})(\nabla_E^*h)(\mathcal{B}, \mathcal{I})\},
$$
\n(4.22)

and

$$
\left(\nabla_{[A,E]}^* \mathcal{R}c^*\right)(\mathcal{B},\mathcal{I}) = \gamma([A,E]) \mathcal{R}c^*(\mathcal{B},\mathcal{I})
$$

+
$$
(n-1)\theta([A,E])h(\mathcal{B},\mathcal{I}).
$$
 (4.23)

So, in account of (3.25) and Equations (4.21) , (4.22) and (4.23) , we obtain the Equation (4.20) .

Now we show that in spite of the Riemannian manifold, a statistical generalized recurrent manifold is not statistical concircular recurrent.

Theorem 4.7. Let (U, h) be statistical generalized recurrent. Then U is not statistical concircular recurrent.

Proof. Let U be statistical generalized recurrent. By virtue of (3.20) , (3.19) and [\(4.2\)](#page-7-2) and direct computations we obtain,

$$
(\nabla_{E}^{*}\tilde{C}r^{*})(S, \mathcal{B}, \mathcal{I}, \mathcal{F}) = (\nabla_{E}^{*}\mathcal{R}m^{*})(S, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

\n
$$
- \left[\frac{\gamma(E)tr_{h}(\mathcal{R}c^{*})}{n(n-1)} + \theta(E)[[h(\mathcal{B}, \mathcal{I})h(S, \mathcal{F})]
$$

\n
$$
- h(S, \mathcal{I})h(\mathcal{B}, \mathcal{F}) \right] - \frac{2tr_{h}(\mathcal{R}c^{*})}{n(n-1)} \left\{ h(S, \mathcal{F})h(\mathcal{B}, \mathcal{K}(E, \mathcal{I})) \right\}
$$

\n
$$
- h(\mathcal{B}, \mathcal{F})h(S, \mathcal{K}(E, \mathcal{I})) - h(S, \mathcal{I})h(\mathcal{B}, \mathcal{K}(E, \mathcal{F}))
$$

\n
$$
+ h(\mathcal{B}, \mathcal{I})h(S, \mathcal{K}(E, \mathcal{F})) \left.\right\}.
$$

So, it follows from [\(3.1\)](#page-3-1), [\(3.19\)](#page-6-1) and [\(3.20\)](#page-6-2),

$$
(\nabla_{E}^{*}\tilde{C}r^{*})(S, \mathcal{B}, \mathcal{I}, \mathcal{F}) = \gamma(E)\tilde{C}r^{*}(S, \mathcal{B}, \mathcal{I}, \mathcal{F})
$$

$$
- \frac{2tr_{h}(\mathcal{R}c^{*})}{n(n-1)} \Biggl\{ h(S, \mathcal{F}) h(\mathcal{B}, \mathcal{K}(E, \mathcal{I}))
$$

$$
- h(\mathcal{B}, \mathcal{F}) h(S, \mathcal{K}(E, \mathcal{I}))
$$

$$
- h(S, \mathcal{I}) h(\mathcal{B}, \mathcal{K}(E, \mathcal{F}))
$$

$$
+ h(\mathcal{B}, \mathcal{I}) h(S, \mathcal{K}(E, \mathcal{F})) \Biggr\}. \tag{4.24}
$$

By virtue of (3.21) , the Equation (4.24) shows that the manifold is not statistical concircular recurrent. \Box

REFERENCES

- 1. S. Amari and H. Nagaoka, Methods of information geometry, American Math. Soc. 191, 2000.
- 2. M. Aydin, A. Mihai and I. Mihai, Generalized Wintgen inequality for statistical submanifolds in statistical manifolds of constant curvature, Bulletin of Math. 7(2017), 155-166.
- 3. R.S.D. Dubey, Generalized recurrent spaces, Indian J. Pure Appl. Math. 10(12)(1979), 1508-1513.
- 4. H. Furuhata, I. Hasegawa, Y. Okuyama, K. Sato and M.H. Shahid, Sasakian statistical manifolds, J. Geom. Phys. 117(2017), 179-186.
- 5. M.B. Kazemi and F. Raei, Recurrent and ϕ -recurrent curvature on mixed 3-Sasakian manifolds, Novi Sad J. Math. **53**(2)(2023), 1-8.
- 6. M.B. Kazemi and S. Salahvarzi, On statistical submersions from 3-Sasakian statistical manifolds, Diff. Geom. Appl. 94(2024), 102-124.
- 7. S. Kobayashi and Y. Ohno, On a constant curvature statistical manifold, Inf. Geom. $5(1)(2022), 31-46.$
- 8. B. Prasada and R.P.S. Yadava, A study on nearly recurrent generalized (k, μ) -space forms, Filomat, 38(6)(2024), 2035-2043.
- 9. H.S. Ruse, On simply harmonic spaces, J. Lond. Math. Soc. 21(1946), 243-247.
- 10. A. Singh and K. Shyam, Generalized recurrent and generalized Ricci recurrent generalized Sasakian space forms, Palestine J. Math. 9.2(2020), 866-873.
- 11. S. Uddin, E. Peyghan, L. Nourmohammadifar and R. Bossly, On Nearly Sasakian and Nearly Kaehler Statistical Manifolds, Mathematics. 11(12)(2023), 1-19.

Received: 15.10.2024 Accepted: 13.11.2024