A study of D-Conformal curvature tensor on (ε)-LP-Sasakian manifolds with generalized symmetric metric connection

Document Type : Original Article

Authors

Department of Mathematics and Astronomy, University of Lucknow, Lucknow, India

Abstract

The aim of the present paper is to study about (ε)-LP-Sasakian mani-folds with generalized symmetric metric connection. We have an example satisfying (ε)-LP-Sasakian manifolds with generalized symmetric metric connection. Further, we studied D-Conformally-flat and ξ-D-Conformally flat curvature conditions in (ε)-LP-Sasakian manifolds with generalized symmetric metric connection.

Keywords


1. T. Takahashi, Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. J. 21
(1969), 644-653.
2. K.L. Duggal, Space time manifolds and contact structures, Int. J. Math. Math. Sci.
13(1990), 3, 545-553.
3. K.L. Duggal and B. Sahin, Lightlike submanifolds of indefinite Sasakian manifolds, Int.
J. Math. Math. Sci. (2007), Art. ID 57585, 21 pp.
4. A. Bejancu and K.L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J.
Math. Math. Sci. 16(1993),no. 3, 545-556.
5. K. Matsumoto, On Lorentzian para contact manifolds, Bull. Yamagata Univ. Natur. Sci.
12 (1989), no. 2, 151-156.
6. I. Mihai, A.A. Shaikh, U. C. De, On Lorentzian para-Sasakian Manifolds, Rend. Sem.
Mat. Messina, Ser. II, 1999.
7. I. Mihai, R. Rosca, On Lorentzian P-Sasakian Manifolds, Classical Analysis, World
Scientific Publ., Singapore, (1992), 155-169.
8. R. Prasad, V. Shrivastava, On (ε)-Lorentzian Para-Sasakian Manifolds, Commun. Korean Math. Soc., 27(2) (2012), 297-306.
9. O. Bahadir and S. K. Chaubey, Some notes on LP-Sasakian Manifolds with generalized
symmetric metric connection, arXiv1805.00810v2, 17 Oct 2019
10. O. Badadir and S.K. Yadav, Almost Yamabe solitons on LP-Sasakian manifolds with
generalized symmetric metric connection of type (α, β), Balkan J. of Geom. and App,
25(2) (2020), 124-139.
11. R.J. Shah, Some curvature properties of D-Conformal curvature tensor on LP-Sasakian
Manifold, Journal of Institute of Science and Technology, 19(1) (2014), 30-34.
12. T. Adati and G. Chuman, D-Conformal changes in Riemannian manifolds admitting a
concircular vector field. TRU Mathematics 20(2) (1984), 235-247.
13. T. Adati, D-conformal para killings vector fields in spetial para-Sasakian manifolds,
Tensor, 47(6) (1988), 215-224.
14. U. Yildirim, M. Atceken, S. Dirik, D-Conformal curvature tensor on (LCS)n-Manifolds,
Turk. J. Math. Computer. Sci., 10 (2018), 215-221.