Sacks-Uhlenbeck α−harmonic maps from Finsler manifolds

Document Type : Original Article

Authors

1 Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran

2 Department of Mathematics, Faculty of Basic Sciences, University of Bojnord, Bojnord, Iran

Abstract

In this paper, we study the stability of Sacks-Uhlenbeck α−harmonic maps from a Finsler manifold to a Riemannian manifold and its applications. Then we find conditions under which any non-constant α−harmonic maps from a compact Finsler manifold to a standard unit sphere Sn(n > 2) is unstable.

Keywords


1. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,Springer, New york, 2000.
2. D. Bao and Z. Shen, On the Volume of Unit Tangent Spheres in a Finsler Manifold,Results in Mathematics, 26 (1994) 1-17.
3. B. Bidabad, Complete Finsler manifolds and adapted coordinates. Balkan Journal of Geometry and Its Applications (BJGA), 14 (1)(2009), 21-29.
4. Q. Chen, K. Li and H. Qiu, f-Harmonic Maps Within Bounded Distance from Quasiisometric Maps., Commun. Math.Stat. (2023), 1-11.
5. R. C. Davidson, Kinetic description of harmonic instabilities in a planar wiggler freeelectron laser, The Physics of fluids, 29(1) (1986), 267-274.
6. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, American. J of Math. (1) (1964), 109-160.
7. V. Ghizdovat, O. Rusu, M.Frasila, C. M. Rusu, M. Agop and D. Vasincu, Towards Multifractality through an Ernst-Type Potential in Complex Systems Dynamics, Entropy , 25(8) (2023), 1149.
8. Q. He and Y. B. Shen, Some results on harmonic maps for Finsler manifolds, Int. J. Math. 16(9) (2005) 1017-1031.
9. S. M. Kazemi Torbaghan, K. Salehi and S. Babaie, Existence and Stability of α− Harmonic Maps, J of Math.2022.1(2022): 1906905.
10. T. Lamm, A. Malchiodi andd M. Micallef, A gap theorem for α-harmonic maps between two-spheres, Analysis and PDE, 14(3)(2021), 881-889.
11. Y. Li and Y. Wang, A counterexample to the energy identity for sequences of α-harmonic maps, . Pacific Journal of Mathematics, 274(1) (2015), 107-123.
12. J. Li and X. Zhu, Energy identity and recklessness for a sequence of Sacks-Uhlenbeck ¨maps to a sphere, Annales de l’Institut Henri Poincar´e C, Analyse non lin´eaire, 36(1)(2019), 103-118.
13. Y. Li and Y. Wang, A weak energy identity and the length of necks for a sequence of Sacks–Uhlenbeck α-harmonic maps, Adv. Math. 225(3) (2010), 1134-1184.
14. X. Mo, Harmonic maps from Finsler manifolds, Illinois. J of Math. 45(4) (2001), 1331-1345.
15. X. Mo and Y. Yang, The existence of harmonic maps from Finsler manifolds to Riemannian manifolds, Sci. China. Ser. A: Math. 48(1) (2005) 115-130.
16. B. Najafi, A characterization of Finsler metrics of constant flag curvature, Indian J.Pure Appl. Math. 43(5), 559-567.
17. G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain threemanifolds, arXiv preprint math/0307245,2003.
18. I. A. Rosu, et al. , Turbulence Removal in Atmospheric Dynamics through Laminar Channels, Fractal and Fractional, 7(8)(2023), 576.
19. J. Sacks, and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Annals of mathematics, (1981), 1-24.
20. A. Shahnavaz, N. Kouhestani, and S. M. Kazemi Torbaghan, The Morse Index of Sacks-Uhlenbeck ¨ α-Harmonic Maps for Riemannian Manifolds. Journal of Mathematics,
2024.1, (2024),  2692876.
21. Y.-B Shen, and Z. Shen, Introduction to modern Finsler geometry, WorldScientific, 2006.
22. Y. Shen and Y. Zhang, Second variation of harmonic maps between Finsler manifolds, Sci. China. Ser. A: Math. 47(1) (2004), 39-51.
23. Z. Shen, Lectures on Finsler Geometry, World Scientific, 2001.
24. S. Tanveer, Singularities in the classical Rayleigh-Taylor flow: formation and subsequent
motion, Proc. Royal. Soc. London. Series A: Math. Phys. Sci. 441(1913), 501-525.
25. S. M. K. Torbaghan and M. M. Rezaii, f-Harmonic maps from Finsler manifolds, Bull. Math. Analysis. Appl. 9(1)(2017), 19-30.
26. S. W. Wei, An average process in the calculus of variations and the stability of harmonic maps, Bull. Inst. Math. Acad. Sinica, 11(3) (1983), 469-474.
27. S.W. Wei, An extrinsic average variational method, Recent developments in geometry (Los Angeles, CA, 1987), Contemp. Math. Amer. Math. Soc., Providence, RI, 101(1998),
55-78