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Abstract. In this paper, we study the stability of Sacks-Uhlenbeck α-harmonic

maps from a Finsler manifold to a Riemannian manifold and its applications.

Then we find conditions under which any non-constant α−harmonic maps from

a compact Finsler manifold to a standard unit sphere Sn(n > 2) is unstable.
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1. Introduction

ψ : (M, g) −→ (N,h) from a compact Riemannian manifold to an arbitrary

Riemannian manifold is harmonic if it is a critical point of the energy functional

E(ψ) =
1

2

∫
M

| dψ |2 dV. (1.1)

Equivalently, ψ solves the corresponding Euler-Lagrange equation:

τ(ψ) := traceg∇dψ = 0. (1.2)
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Noting that the section τ(ψ), as an extension of the Riemannian Laplacian

operator, is called the tension field of ψ. Furthermore , the second order non-

linear PDE, τ(ψ) = 0, is typically determined. Eells and Sampson applied the

heat flow technique to prove the existence of harmonic map from a compact

Riemannain manifold to a compact Riemannian manifold whose sectional cur-

vature is non-positive. The success of this technique relies on Bochner formula

for maps between Riemannian manifolds. In addition, they studied some rigid-

ity theorems for harmonic maps under stronger curvature assumptions, such

as negative sectional curvature for the target manifold and non-negative Ricci

curvature for the domain manifold. Due to the applications of harmonic maps

in many significant physical theories such as the theory of relativity, gravia-

tional theorem, elasticity theory, etc., many scholars have done research on this

topic, [7, 18].

From the point of view of calculus variations, due to the fact that the

energy functional E does not satisfy the well-known Palais-Smale condition,

finding a harmonic map between two arbitrary Riemannian manifold is not

easy when the dimension of domain manifold dim(M) ≥ 2. Especially, when

dim(M) = 2, it is proven that E is of conformal invariance and the corre-

sponding variational problem possesses a non-compact invariance group and

represent limiting cases where the Palais-Smale condition just fails, [13]. Thus,

harmonic mappings from a surface to an arbitrary Riemannian manifold are of

special interest and importance. Nowadays much attention has been given to

this case. Sacks and Uhlenbech proved the existence of harmonic maps from

a closed surface in their pioneering paper [19] by introducing the perturbed

energy functional which satisfies the Palais-Smale condition. For this purpose,

they used α−harmonic maps as the critical points of perturbed energy func-

tional to approximate harmonic maps. More precisely, Sacks and Uhlenbeck

defined the α-energy functional as follows

Eα(ψ) =
1

2

∫
M

(1+ | dψ |2)αdVg, (1.3)

and considered α−harmonic maps as the critical points of Eα. Noting that,

Eα can be regarded as a perturbation of energy functional, E. If there exists a

subsequence of α−harmonic maps {ψi} which converges smoothly as i −→∞,

then {ψi} will converge to a harmonic map, [13]. Generally, there is no such

smooth convergence, therefore Sacks and Uhlenbeck developed some techniques

and powerful methods to study the blow-up phenomena for such a variational

problem. In 2019, Karen Uhlenbeck , as the first woman, won prestigious

Abel prize for her prominent works on α- harmonic maps and their physical

applications.

In recent two decades, α−harmonic maps were investigated by many schol-

ars. In [12] the authors studied the energy identity and necklessness for a

sequence of α−harmonic maps during blowing up when its codomain is a unit
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standard sphere Sk−1. Also they showed that the energy identity can be used

to give an alternative proof of Perelman’s result [17] that the Ricci flow from a

compact orientable prime non-aspherical 3-dimensional manifold becomes ex-

tinct in finite time while in [20] it is obtained an optimal gap theorem for

the α-harmonic maps of degree -1,0 or 1 by using an energy identity in [12].

In [13], the convergence behavior of a sequence of α−harmonic mappings ψα
with Eα(ψα) < C, is discussed and an example which shows that the necks

contain at least a geodesic of infinite length, is given. The existence and stabil-

ity of α−harmonic maps are investigated in [9]. In [11], a closed Riemannian

manifold (N,h) and a sequence of α−harmonic maps from S2 into N with

uniformly bounded energy were constructed such that the energy identity for

this sequence is not true.

The notion of harmonic mappings from a Finsler manifold was first intro-

duced by Mo, [14]. The existence of this type of harmonic maps in each ho-

motopy class was conjectured by Professor S.S. Chern on the workshop of New

Methods in Finsler Geometry in 2000. In [15], Mo and Yang solved the conjec-

ture of Chern and proved the existence of harmonic maps in a given homotopy

class from a compact Finsler manifold into a Riemannian manifold with non-

positive sectional curvature. After that harmonic maps on Finsler manifolds

have been studied extensively by many scholars, [8, 14, 15, 22]. For instance,

the authors in [22] extended the Mo’s work and stdudied the variational for-

mulas of harmonic maps between Finsler manifolds. In [8], it is studied the

conditions under which any harmonic map from an Einstein Riemannian man-

ifold to a Finsler manifold is totally geodesic. Also it is shown that any stable

harmonic maps from a Euclidean unit sphere Sn to any Finsler manifold is

constant.

In this work, we investigate α-harmonic maps and the stability of this type

of harmonic maps as well as their practical applications by using the ideas

of [3, 4, 8, 9, 14, 15, 16, 19, 23, 25]. In this regard, the notions of Sacks-

Uhlenbeck α−energy functional and α−harmonic maps from a Finsler manifold

to a Riemannian manifold are studied. Then the variational formulas of this

type of energy functional is obtained. In addition, the stability of α−harmonic

maps and its applications are investigated. Finally, the criteria that cause

α−harmonic maps from a compact Finsler manifold to a Euclidean standard

sphere to be unstable, are given. Sections 3 and 4 summarize our significant

findings.

This paper is organized as follows. Section 2 devotes to recall some basics in

Finsler geometry and introduce some terminology and notation of Finsler ge-

ometry. In section 3, the notions of α−energy functional, α−energy density and

α−harmonic maps are introduced. Furthermore, the Euler-Lagrange equation

associated to the α−energy functional is obtained via calculating the first vari-

ational formula of the α−energy functional. Finally an example of α−harmonic
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maps from a Finsler manifold to a Riemannian manifold is given. In the last

section, the notion of stable α−harmonic maps from a Finsler manifold to a

Riemannian manifold and its applications are investigated. Additionally, we

study the conditions under which any stable α−harmonic map from a Finsler

manifold to an Euclidean standard sphere Sn(n > 2) is constant.

2. Preliminaries

In this section, we review some basics and introduce some terminology and

notations of Finsler geometry. We follow the presentation in [21], where many

notions are developed from the Riemannian point of view. We refer to [23] as

more exhaustive reference in Finsler geometry.

Let Mm be an m−dimensional manifold and π : TM −→M be its tangent

bundle, and let (x, y) be a point of TM with x ∈ M , y ∈ TxM , (xi) be a

local coordinate systems with the domain V ⊂ M and (xi, yi) be the induced

standard local coordinates system on π−1(V ) with y = yi
∂

∂xi
. A Finsler metric

on M is a function F : TM −→ [0,∞) satisfying the following properties:

(i) Regularity: F (x, y) is smooth on TM \ {0}.
(ii) Positive homogenity: F (x, µy) = µF (x, y), for λ > 0,

(iii) Strong convexity: the fundamental quadratic form

g := gij(x, y)dxi ⊗ dxj , gij :=
1

2
[F 2]yiyj , (2.1)

is positive definite at every point (x, y) ∈ TM \ {0}, where [F 2]yiyj

mean
∂2F

∂yi∂yj
.

Locally Minkowski and Riemannian manifolds are well-known examples of

Finsler manifolds. In the sequel, the Einstein summation convention is used

through this paper and the following convention of index ranges shall be used

1 ≤ A,B,C, ... ≤ 2m− 1, 1 ≤ a, b, c, ... ≤ m− 1,

1 ≤ i, j, k, ... ≤ m, 1 ≤ β, γ, δ, ... ≤ n. (2.2)

Two more significant quantities in Finsler geometry are Cartan tensor and

Cartan form, denoted by A and η, respectively and defined as follows

A := Aijkdx
i ⊗ dxj ⊗ dxk, Aijk :=

F

4
[F 2]yiyj ,

η := ηidx
i, ηi := gjkAijk. (2.3)

Let SM := ∪xSxM be the projective sphere bundle of M . Noting that under

rescaling y −→ ty for t > 0 most geometric quantities constructed by Finsler

structure are invariants, thus make sense on SM . The canonical projection

ρ : SM −→ M defind by (x, y) −→ x pulls back the tangent bundle TM to

the m−dimensional vector bundle ρ∗TM over 2m − 1 dimensional manifold
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SM. The bundle ρ∗TM and its dual are called Finsler bundle and dual Finsler

bundle, respectively. At any point (x, y) ∈ SM, any fiber of ρ∗TM has a local

basis { ∂

∂xi
} and a metric g defined by (2.1). Here { ∂

∂xi
} and its dual {dxi}

stand for the sections (x, y,
∂

∂xi
) ∈ Γ(ρ∗TM) and (x, y, dxk) ∈ Γ(ρ∗T ∗M)

, respectively. The global section `(x, y) =
yj

F

∂

∂xj
∈ ρ∗TM is called the

distinguished section and the Hilbert form of (M,F ) is considered as the dual

of the distinguished section defined by ω = [F ]yidx
i, where [F ]yi means

∂F

∂yi
.

Moreover, any fiber of the Riemannian vector bundle (ρ∗TM, g) has an adapted

frame {ej := uij
∂

∂xi
}, i.e. g(ei, ej) = δij and em := `. The dual of the adapted

frame {ej} is denoted by {ωj := ϑjkdx
k}, where ωi(ej) = δij . Noting that

ωm = ω. Based on the above notations, it can be shown that dxj = ujiω
i and

∂
∂xj = ϑijei, where (ϑij) and (uij) are related by ukjϑ

i
k = δij . It can be found more

relationships among the quadratic form of F , (uij)’s and (ϑij)’s in [1]. Denote

the coefficients of non-linear connection on TM by N i
j :=

1

2

∂Gi

∂yj
, where

Gi :=
1

4
gik(

∂2F 2

∂yk∂xh
yh − ∂F 2

∂xk
).

Setting

δ

δxi
:=

∂

∂xi
−N j

i

∂

∂yj
, δyi = dyi +N i

jdx
j , ω2m = [F ]yj

δyj

F
. (2.4)

It can be seen that { δ

δxi
,
∂

∂yi
} is the local orthonormal basis on TzTM and

{dxi, δyi} is its dual basis. Additionally, {ωk := ϑksdx
s, ωm+b := ϑbi

δyi

F
} is a

local basis of T ∗SM . Noting that ω2m is a dual of the vector yi
∂

∂yi
, then it

vanishes on SM . According to the above notations, the vertical subbundle,

horizontal subbundle, volume element and Sasaki type metric of SM are de-

noted by V SM,HSM, dVSM and G, respectively and defined as follows (see

[2])

V SM := Ux∈MTSxM, HSM := {ϑ ∈ TSM, ωm+a(ϑ) = 0},

G := δijω
iωj + δabω

m+a ⊗ ωm+b, dVSM := ω1 ∧ ω2 ∧ · · · ∧ ω2m−1. (2.5)

Due to the fact that ρ∗TM is isomorph with HSM , then HSM is said to

be the Finsler bundle. In the sequel, the corresponding horizontal lift of any

section Y ∈ Γ(ρ∗TM) is denoted by Y H , [14].
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The Chern connection, denoted by ∇c, is a well-known connection on ρ∗TM

whose connection forms are characterized by the following equations

dgij − gisωsj − gjsωsi = 2Aijs
δys

F
, (2.6)

and

d(dxk)− dxj ∧ ωkj = 0. (2.7)

By means of (2.7), it can be shown that the curvature 2-forms of the Chern

connection, Ωji := dωji − ωsi ∧ ωjs, have the following structure

Ωji :=
1

2
Rjistdx

s ∧ dxt + P jistdx
s ∧ δy

t

F
. (2.8)

Applying (2.8), the Landsberg curvature on (M,F ) is denoted by L and defined

as follows

L := Lrstdx
r ∧ dxs ∧ dxt, Lrst := gri

yh

F
P ihst. (2.9)

Considering that Lrst = −Ȧrst, where dot denotes the covariant derivative

along the Hilbert form, [22].

The divergence of any 1-form θ = θkω
k ∈ Γ(ρ∗T ∗M) is defined as follws

divGθ := traceGDθ, (2.10)

where where G is a Sasakian type metric of SM and D denotes the Levi-

Civita connection on (SM, g). Due to the fact that ρ∗T ∗M is isomomorph

with T ∗SM , it can be obtained that

divGθ =
∑
i

θi|i +
∑
a,b

θaLbba =
∑
i

(∇ceHi dθ)(ei) +
∑
a,b

θaLbba, (2.11)

where {ei} is an adapted frame with respect to g, ′′ |′′ denotes the horizon-

tal covariant differential with respect to the Chern connection and L is the

Landsberg curvature on (M,F ), [14].

3. α−harmonic maps

Let ψ : (Mm, F ) −→ (Nn, h) be a smooth map from a Finsler manifold to a

Riemannian manifold. Throughout this paper (Mm, F ) is an m−dimensional

compact Finsler manifold, (Nn, h) is an n−dimensional Riemannian manifold

and α is a real constant with a value greater than one. Denote the Levi-

Civita connection on (N,h), the Chern connection on ρ∗TM and the pull-back

connection on ρ∗(ψ−1TN) by ∇N ,∇c and ∇, respectively. The α−energy

density of ψ is denoted by eα(ψ) and defined as follows

eα(ψ) :=
1

2

(
1+ | dψ |2

)α
, (3.1)

where

| dψ |2:= tracegh(dψ, dψ).
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Here traceg stands for taking the trace with respect to g (the fundamental

quadratic form of F ) at (x, y) ∈ SM . The α− energy density of ψ with respect

to a local coordinate (xi) on M and (yβ) on N can be rewritten as follows

eα(ψ)(x, y) :=
1

2
(1 + δijhβγ(x̄)ψβi ψ

γ
j )α (3.2)

where x̄ = ψ(x), {ei = uji
∂

∂xj
} is an adapted frame with respect to g at (x, y) ∈

SM and dψ(ei) = ψβi
∂

∂yβ
◦ ψ. The α-energy functional of ψ is denoted by Eα

and defined as follows

Eα(ψ) =
1

cm−1

∫
M

eα(ψ)dVSM , (3.3)

where dVSM is the canonical volume element of SM defined by (2.5) and cm−1

denotes the volume of the standard (m− 1) dimensional sphere.

Let {ψt : M −→ N} be a smooth variation of ψ such that ψ0 = ψ and

W =
∂ψt
∂t
|t=0= W β ∂

∂yβ
◦ ψ.

Applying (3.2), the α−energy density of ψt can be obtained as follows

eα(ψt)(x, y) =
1

2
(1 + δijhβγ(x̄)ψβt|iψ

γ
t|j)

α, (3.4)

where x̄ = ψt(x) and dψt(ei) = uji
∂ψβt
∂xj

∂

∂yβ
◦ ψt := ψβt|i

∂

∂yβ
◦ ψ. Using (3.4),

we get

∂

∂t
eα(ψt) |t=0 =

1

2

∂

∂t
(1 + δijhβγ(x̄)ψβt|iψ

γ
t|j)

α |t=0

= αδij{uli
∂W β

∂xl
ψγj hβγ +

1

2
ψβi ψ

γ
j

∂hβγ
∂x̄µ

Wµ}

(1 + δmnhβγ(x̄)ψβmψ
γ
n)α−1

=
∑
i

{uli
δW β

δxl
ψγi hβγ + ψβi ψ

γ
i
NΓσµγhβσW

µ}

(1 + δmnhβγ(x̄)ψβmψ
γ
n)α−1}

=
∑
i

αh(∇eHi W,dψ(ei))(1 + δmnhγβ(x̄)ψβmψ
γ
n)α−1

=
∑
i

(1+ | dψ |2)α−1tracegh(∇W,dψ), (3.5)

where {NΓβγσ} are the coefficients of the Levi-Civita connection on (N,h).

Setting

θ := h(W, (1+ | dψ |2)α−1dψ(ei))ω
i.
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Due to the fact that Lbba = −Ȧbba and considering (2.11), we get

divGθ =
∑
j

{(∇ceHj θ)(ej)}+
∑
a,b

(1+ | dψ |2)α−1h(W,dψ(ea))Lbba

=
∑
j

{h(∇eHj W, (1+ | dψ |2)α−1dψ(ej))

+ h(W, (∇eHj (1+ | dψ |2)α−1dψ)(ej))}

−
∑
a,b

h(W, (1+ | dψ |2)α−1dψ(ea))Ȧbba

= h

(
W, (1+ | dψ |2)α−1traceg∇dψ + dψ ◦ ρ(gradH(1+ | dψ |2)α−1)

− (1+ | dψ |2)α−1dψ ◦ ρ(QH)

)
+
∑
j

h(∇eHj W, (1+ | dψ |2)α−1dψ(ej)), (3.6)

where Abba = A(eb, eb, ea),

traceg∇dψ = gij

(
∇ ∂

∂xj

dψ(
∂

∂xi
)− dψ(∇c ∂

∂xj

∂

∂xi
)

)

and Q is defined as follows

Q :=
∑
a,b

Ȧbbaea. (3.7)

By means of (3.5) and (3.6) and using the Green’s theorem, it is obtained that

d

dt
Eα(ψt) |t=0= − 1

cm−1

∫
SM

h(τα(ψ),W )dVSM , (3.8)

where

τα(ψ) = (1+ | dψ |2)α−1traceg∇dψ + dψ ◦ ρ(gradH(1+ | dψ |2)α−1)

− (1+ | dψ |2)α−1dψ ◦ ρ(QH), (3.9)

here Q defined by (3.7), gradH(1+ | dψ |2)α−1) denotes the horizontal part of

grad(1+ | dψ |2)α−1) ∈ Γ(TSM) and ρ : SM −→M is the canonical projection

on SM . The section τα(ψ) is called α−tension field of ψ. By (3.8) and (3.9),

the following result is obtained.

Theorem 3.1. Any smooth map ψ : (M,F ) −→ (N,h) is α−harmonic if and

only if τα(ψ) ≡ 0.

Example 3.2. Let ψ : (R2, F ) −→ (R3, 〈, 〉) be a smooth map from a locally

Minkowski manifold (R2, F ) to the three dimensional Euclidean space (R3, 〈, 〉)
defined by

ψ(x) = (x1 − 2x2,−3x1 + x2, 4x1 − 2x2)
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where x = (x1, x2) ∈ R2. By (3.8) and (3.9) together and considering that the

Landsberg curvatue of the locally Minkowski manifolds vanishes, it can be seen

that ψ is an α−harmonic map.

4. Stable α-harmonic map

This section devotes to study the stability of α−harmonic maps from a

Finsler manifold to a Riemannian manifold. In this regard, first we obtain

the second variation formula of the α−energy functional by making use of the

Green’s theorem. Then we introduce the notion of stable α−harmonic maps

and investigate its applications. Finally the criteria that cause α−harmonic

maps from a compact Finsler manifold to a Euclidean standard sphere to be

unstable, are given.

Stable Sacks-Uhlenbeck harmonic maps have various physical applications

in different fields such as physics, engineering, and materials science. These

applications include studying the behavior of elastic materials, analyzing the

dynamics of magnetic systems, and understanding the behavior of liquid crys-

tals. The study of stable Sacks-Uhlenbeck harmonic maps plays a crucial role

in gaining insights into the physical properties and behaviors of these systems,

leading to advancements in various technological and scientific applications,

[20].

Theorem 4.1. (The second variation formula) Let ψ : (M,F ) −→ (N,h) be

an α− harmonic map and {ψt,s : M −→ N}−ξ<s,t<ξ be a 2-parameter smooth

variation of ψ such that ψ0,0 = ψ. Then

∂2

∂t∂s
Eα(ψ)

∣∣∣∣
t=s=0

= − 1

cm−1

∫
SM

{
Bα,ψ〈∇υ, dψ〉〈∇W,dψ〉 − h(∇gradHAα,ψ W −Aα,ψ∇QHW

+Aα,ψ traceg∇2W +Aα,ψ tracegRN (W,dψ)dψ, V )

}
dVSM , (4.1)

where Q defined by (3.7), RN is the curvature tensor on (N,h), 〈, 〉 denotes the

inner product on T ∗M ⊗ ψ−1TN and

W :=
∂ψt,s
∂t

∣∣∣∣
t=s=0

, V :=
∂ψt,s
∂s

∣∣∣∣
t=s=0

,

Aα,ψ := 2α(1+ | dψ |2)α−1, Bα,ψ := 4α(α− 1)(1+ | dψ |2)α−2. (4.2)

Proof. Let M̄ be the product manifold (−ξ, ξ)×(−ξ, ξ)×M , ρ̄ : SM̄ −→ M̄ be

the natural projection on the sphere bundle SM̄ and Ψ : M̄ −→ N is defined

by Ψ(t, s, x) := ψt,s(x), and let the natural extension of
∂

∂t
on (−ξ, ξ), ∂

∂s

on (−ε, ε) and
∂

∂x
on M to the product manifold (−ξ, ξ) × (−ξ, ξ) ×M are
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denoted by
∂

∂t
,
∂

∂s
and

∂

∂x
again, respectively. The same notation ∇c and ∇

shall be used for the Chern connection on ρ̄∗TM̄ and the induced connection

on ρ̄∗(Ψ−1TN), respectively. Then, by (3.3), we have

∂2

∂t∂s
Eα(ψt,s)

∣∣∣∣
t=s=0

=

∫
SM

∂2eα(ψt,s)

∂t∂s
|s=t=0 dVSM . (4.3)

By calculating the second derivation of the α− energy density, we get

∫
SM

∂2

∂t∂s
eα(ψt,s)dVSM

=

∫
SM

{
(
∂Aα,ψt,s
∂s

)h(∇ ∂

∂t

dψt,s(ei), dψt,s(ei))

+Aα,ψt,s
(
h(∇ ∂

∂t

dψt,s(ei),∇ ∂

∂s

dψt,s(ei))

+ h(∇ ∂

∂s

∇ ∂

∂t

dψt,s(ei), dψt,s(ei))

)}
dVSM , (4.4)

Due to the fact that

∂Aα,ψt,s
∂s

∣∣∣∣
t=s=0

= Bα,ψh(∇eiV, dψ(ei)), (4.5)

Then the first term of the right-hand side of (4.4), can be obtained as follows

∂Aα,ψt,s
∂s

h(∇ ∂

∂t

dψt,s(ei), dψt,s(ei)) |
∣∣∣∣
t=s=0

= Bα,ψ〈∇V, dψ〉〈∇W,dψ〉 (4.6)

where Bα,ψ are defined by (4.2). Let

η := Aα,ψt,sh(∇eHi dψt,s(
∂

∂t
), dψt,s(

∂

∂s
))ωi.

By means of (2.11), we have

divG(η) =
∑
i

(∇ceHi η)(ei)−Aα,ψt,s
∑
a,b

h(∇eHa dψt,s(
∂

∂t
), dψt,s(

∂

∂s
))Ȧbba

=
∑
i

{
eHi (Aα,ψt,s)h(∇eHi dψt,s(

∂

∂t
), dψt,s(

∂

∂s
))

+Aα,ψt,sh(∇eHi ∇eHi dψt,s(
∂

∂t
), dψt,s(

∂

∂s
))

+Aα,ψt,sh(∇eHi dψt,s(
∂

∂t
),∇eHi dψt,s(

∂

∂s
))

}
−Aα,ψt,s

∑
a,b

h(∇eHa dψt,s(
∂

∂t
), dψt,s(

∂

∂s
))Ȧbba. (4.7)
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Applying (4.7) and Green’s theorem, the second term of the right hand side

of(4.4) can be obtained as follows∫
SM

Aα,ψt,sh(∇ ∂

∂t

dψt,s(ei),∇ ∂

∂s

dψt,s(ei))

∣∣∣∣
t=s=0

dVSM

=

∫
SM

Aα,ψt,sh(∇eHi dψt,s(
∂

∂t
),∇eHi dψt,s(

∂

∂s
))

∣∣∣∣
t=s=0

dVSM

= −
∫
SM

h(∇gradHAα,ψV +Aα,ψtraceg∇2V −Aα,ψ∇QHV,W )dVSM . (4.8)

On the other hand, let

η̂ := h(∇ ∂

∂s

dψt,s(
∂

∂t
),Aα,ψt,sdψt,s(ei))ωi.

By means of (2.11), we have

divG(η̂) =
∑
i

{
h(∇eHi ∇ ∂

∂s

dψt,s(
∂

∂t
),Aα,ψt,sdψt,s(ei))

+ h(∇ ∂

∂s

dψt,s(
∂

∂t
),∇eHi (Aα,ψt,sdψt,s(ei)))

}

−Aα,ψt,s
∑
a,b

h(∇ ∂

∂s

dψt,s(
∂

∂t
), Ȧbbadψt,s(ea)). (4.9)

By means of (4.9) and considering the Green’s theorem, the last term of the

right-hand side of (4.4), can be obtained as follows∫
SM

Aα,ψt,sh(∇ ∂

∂s

∇ ∂

∂t

dψt,s(ei), dψt,s(ei))

∣∣∣∣
t=s=0

dVSM

=

∫
SM

Aα,ψt,sh(∇ ∂

∂s

∇eHi dψt,s(
∂

∂t
), dψt,s(ei))

∣∣∣∣
t=s=0

dVSM

=

∫
SM

Aα,ψtracegh(RN (V, dψ)dψ,W )dVSM

−
∫
SM

h((∇ ∂

∂s

dψt,s(
∂

∂t
))

∣∣∣∣
t=s=0

τα(ψ))dVSM

=

∫
SM

Aα,ψtracegh(RN (V, dψ)dψ,W )dVSM , (4.10)

where we use the α−harmonicity of ψ for the last equality. Substituting

(4.6),(4.8) and (4.10) in (4.4), Theorem 4.1 follows. �
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Under the assumptions of theorem 4.1, setting

Iα,ψ(V,W ) =
∂2

∂t∂s
Eα(ψt,s)

∣∣∣∣
t=s=0

. (4.11)

Then ψ is said to be stable α−harmonic if Iα,ψ(W,W ) ≥ 0 for any compactly

supported vector field ω along ψ. Otherwise it is called unstable. By means

of Theorem 4.1, it can be obtained that

Iα,ψ(W,W )

:= − 1

cm−1

∫
SM

{
Bα,ψ〈∇W,dψ〉2 − h(∇gradHAW −Aα,ψ∇QHW

+Aα,ψtraceg∇2W +Aα,ψtracegRN (W,dψ)dψ,W )

}
dVSM . (4.12)

Stable harmonic maps play an important role in geometry, mechanics and

physics, [24]. For instance, the analysis of harmonic stability properties for

planar wiggler free-electron laser(FEL) are investigated by applying the lin-

earized Vlasov-Maxwell equations. Consider that the analysis is carried out

in the Compton regime for a tenuous electron beam propagating in the z di-

rection through the constant amplitude planar wiggler magnetic field B0 =

−Bωcosk0zêx, [5].

4.1. Stability of α-harmonic maps from a Finsler manifold to a Eu-

clidean sphere. In this part, we study the stability of α−harmonic maps from

a without boundary Finsler manifold to a Euclidean standard unit sphere by

applying the extrinsic average variational method of Wei ([26, 27]).

Consider the unit standard sphere Sn as a submanifold of the Euclidean

space Rn+1. Denote by ∇R and ∇S , the Levi-Civita connections on Rn+1 and

Sn , respectively. At any point x ∈ Sn, any vector ω ∈ Rn+1 can be split as

follows

ω = ω> + ω⊥, (4.13)

where ω> is the tangent part to Sn and ω⊥ = 〈V, x〉x is the normal part to Sn.
Denote by B and AV , the second fundamental form of Sn in Rn+1 and the

shape operator of Sn corresponding to a normal vector field V respectively,

which is defined as follows

B(X,Y ) = −〈X,Y 〉x, (4.14)

and

AV (X) = −(∇RXV )>, (4.15)

where X,Y are tangent vectors of Sn at x and 〈, 〉 is the Euclidean metric on

Rn+1. Noting that, the the shape operator and the second fundamental form

of Sn are satisfied the following equation

〈B(X,Y ), V 〉 = 〈AV (X), Y 〉 = −〈X,Y 〉〈x, V 〉, (4.16)
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for more details see [20]. Under the notations above we have the following:

Theorem 4.2. Let ψ : (M,F ) −→ Sn be a α−harmonic map from a compact

Finsler manifold (M,F ) such that | dψ |2< n− 2

2α− n
. Then ψ is unstable.

Proof. Choose an arbitrary point z ∈ SM and fix it. Setting x̂ = ψ̂(z) where

ψ̂ = ψ ◦ ρ. Here ρ : SM −→ M is the canonical projection on SM . Let

{Θβ}n+1
β=1 be a constant orthonormal basis in Rn+1, RS denotes the curvature

tensor of Sn and {ei}mi=1 be an adapted frame field on M . By means of (4.12),

we have

n+1∑
β=1

Iα,ψ(Θ>β ,Θ
>
β )

:= − 1

cm−1

∫
SM

{Bα,ψ〈∇Θ>β , dψ〉2 − h(∇gradHAα,ψ Θ>β −Aα,ψ∇QHΘ>β

+Aα,ψtraceg∇2Θ>β +Aα,ψtracegRS(Θ>β , dψ)dψ,Θ>β )}dVSM (4.17)

By (4.13) and (4.15), we have

∇XΘ>β = ∇S
dψ̂(X)

Θ>β = (∇R
dψ̂(X)

Θ>β )>

= (∇R
dψ̂(X)

Θβ −Θ⊥β )> = −(∇R
dψ̂(X)

Θ⊥β )>

= AΘ⊥
β (dψ̂(X)). (4.18)

Making use of (4.16) and (4.18), we get

〈∇XΘ>β , dψ̂(X)〉 = 〈AΘ⊥
β (dψ̂(X)), dψ̂(X)〉

= − | dψ̂(X) |2 〈x̂,Θ⊥β 〉

= − | dψ̂(X) |2 〈x̂,Θβ〉. (4.19)

Applying (4.19), the first term of the right-hand side of (4.17) can be obtained

as follows

Bα,ψ
n+1∑
β=1

m∑
i=1

〈∇eiΘ>β , dψ̂(eHi )〉2 =Bα,ψ
n+1∑
β=1

m∑
i=1

(− | dψ̂(eHi ) |2 〈x̂,Θβ〉)2

=Bα,ψ
n+1∑
β=1

| dψ |4 〈x̂,Θβ〉2

=Bα,ψ | dψ |4 . (4.20)
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Applying (4.13) and (4.15), we get

∇gradHAα,ψΘ>β = ∇S
dψ̂(gradHAα,ψ)

Θ>β

= (∇R
dψ̂(gradHAα,ψ)

Θ>β )>

= (∇R
dψ̂(gradHAα,ψ)

(Θβ −Θ⊥β ))>

= −(∇R
dψ̂(gradHAα,ψ)

Θ⊥β )>

= AΘ⊥
β (dψ̂(gradHAα,ψ)). (4.21)

Let Λβ : Sn −→ R is defined by

Λβ(x) := 〈Θβ , x〉, ∀x ∈ Sn.

It can be checked that

AΘ⊥
β (X) = −ΛβX, (4.22)

for every vector field X on Sn. By means of (4.16),(4.21) and (4.22), the second

term of (4.17) is obtained as follows

−
∑
β

〈∇gradHAα,ψΘ>β ,Θ
>
β 〉 =

∑
β

〈−AΘ⊥
β (dψ̂(gradHAα,ψ)),Θ>β 〉

=
∑
β

Λβ ◦ ψ〈dψ̂(gradHAα,ψ),Θ>β 〉. (4.23)

Similarly,

−
∑
β

Aα,ψ〈∇QHΘ>β ,Θ
>
β 〉 =

∑
β

Λβ ◦ ψ̂〈dψ̂(QH),Θ>β 〉. (4.24)

Applying (4.21) and (4.22) together and considering ∇eHi Θ>β = AΘ⊥
β (dψ̂(eHi )),

it can be seen that∑
i

∇eHi ∇eHi Θ>β =
∑
i

∇eHi A
Θ⊥
β (dψ̂(eHi ))

= −
∑
i

∇eHi (Λβ ◦ ψ̂ dψ̂(eHi ))

= −dψ̂(grad(Λβ ◦ ψ̂))− Λβ ◦ ψ̂
∑
i

∇eHi dψ(ei)

= −
∑
i

〈dψ̂(eHi ), grad(Λβ) ◦ ψ̂)〉dψ̂(eHi )

− Λβ ◦ ψ̂
∑
i

∇eHi dψ(ei)

= −
∑
i

〈dψ̂(eHi ),Θ>β ◦ ψ̂〉dψ̂(eHi )

− Λβ ◦ ψ̂
∑
i

∇eHi dψ(ei), (4.25)
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where we use gradΛβ = Θ>β , for the last equality. By means of (4.25), the

fourth term of (4.12) is obtained as follows∑
β

Aα,ψ〈traceg(∇2Θ>β ),Θ>β 〉 = −Aα,ψ | dψ |2

−
∑
β

Λβ ◦ ψ̂〈Aα,ψtraceg∇dψ,Θ>β 〉. (4.26)

Due to the fact that the sectional curvature of Sn+1 is constant, the last

term of the right-hand side of (4.17) can be calculated as follows

n+1∑
β=1

m∑
i=1

〈RS(Θ>β , dψ(ei))dψ(ei),Θ
>
β 〉

=

n+1∑
β=1

m∑
i=1

{
| dψ(ei) |2| Θ>β |2 −〈dψ(ei),Θβ〉2

}

= − | dψ |2 + | dψ |2
n+1∑
β=1

| Θβ −Θ⊥β |2

= − | dψ |2 + | dψ |2
n+1∑
β=1

| Θβ − 〈Θβ , x〉x |2

= − | dψ |2 + | dψ |2
n+1∑
β=1

(| Θβ |2 −〈Θβ , x〉2)

= − | dψ |2 + | dψ |2 {(n+ 1)− | x |2}

= (n− 1) | dψ |2 . (4.27)

By substituting (4.20)- (4.27) in (4.17), we get

n+1∑
β=1

Iα,ψ(Θ>β ,Θ
>
β )

= − 1

cm−1

∑
β

∫
SM

Λ ◦ ψ〈τα(ψ),Θ>β 〉dVSM

− E
cm−1

∫
SM

{(2− n+ (2α− n) | dψ |2) | dψ |2}dVSM , (4.28)

where E = 2α(1+ | dψ |2)α−2. By (4.28) and using the α− harmonicity

condition of ψ, it follows that

n+1∑
β=1

Iα,ψ(Θ>β ,Θ
>
β ) < 0. (4.29)

Then ψ is unstable and hence completes the proof. �
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