On C3-like Finsler spaces of relatively isotropic mean Landsberg curvature

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran

Abstract

In this paper, we study the class of C3-like Finsler metrics with relatively isotropic mean Landsberg. We find some conditions under which these metrics reduce to relatively isotropic Landsberg metrics

Keywords


  • 1. M. Matsumoto and S. H¯oj¯o, A conclusive theorem for C-reducible Finsler spaces,
    Tensor. N. S. 32(1978), 225-230.
  • 2. M. Matsumoto and C. Shibata, On semi-C-reducibility, T-tensor and S4-1ikeness of
    Finsler spaces, J. Math. Kyoto Univ. 19(1979), 301-314.
  • 3. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys.
    31(1992), 43-84.
  • 4. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
  • 5. B. Najafi, A. Tayebi and M.M. Rezaei, On general relatively isotropic L-curvature
    Finsler metrics, Iran. J. Sci. Tech. Trans. A, 29(2005), 357-366.
  • 6. B. Najafi, A. Tayebi and M. M. Rezaei, On general relatively isotropic mean Landsberg metrics, Iran. J. Sci. Tech. Trans. A, 29(2005), 497-505.
  • 7. S. K. Narasimhamurthy, S. T. Aveesh and P. Kumar, On v-curvature tensor of C3-
    like conformal Finsler spaces, Acta Univ. Sapientiae, Math. 2(2009), 101-108.
  • 8. H.D. Pande, P.N. Tripathi and B.N. Prasad, On a special form of the hv-curvature
    tensor of Berwald’s connection B of Finsler space, Indian. J. Pure. Appl. Math.
    25(1994), 1275-1280.
  • 9. C. M. Prasad and O. P. Dube, On T-tensor and v-curvature tensor of C3-like Finsler
    spaces, Indian J.Pure. Appl. Math, 23(1992), 791-795.
  • 10. B. N. Prasad and J. N. Singh, On C3-like Finsler spaces, Indian. J. Pure. Appl.
    Math, 19(1988), 423-428.
  • 11. A. Tayebi, E. Azizpour and E. Esrafilian, On a family of connections in Finsler
    geometry, Publ. Math. Debrecen, 72(2008), 1-15.
  • 12. A. Tayebi and B. Najafi, Shen’s Process on Finslerian Connections, Bull. Iran. Math.
    Society. 36(2) (2010), 57-73.
  • 13. A. Tayebi and E. Peyghan, Finsler Metrics with Special Landsberg Curvature, Iran.
    J. Sci. Tech. Trans A2, Vol. 33, No. A3, (2009), 241-248.
  • 14. A. Tayebi and E. Peyghan, On Ricci tensors of Randers metrics, J. Geom. Phys.
    60(2010), 1665-1670.
  • 15. A. Tayebi and E. Peyghan, Special Berwald Metrics, Symmetry. Int. Geom. Meth.
    Appl. 6(2010), 008.