Journal of Finsler Geometry and its Applications Vol. 5, No. 1 (2024), pp 128-135. <https://doi.org/10.22098/jfga.2024.14877.1125>

On C3-like Finsler spaces of relatively isotropic mean Landsberg curvature

Maryam Mirzazadeh^{a D}

^aDepartment of Mathematics, Faculty of Science, University of Qom Qom. Iran

E-mail: maryam.mzh990.mm@gmail.com

Abstract. In this paper, we study the class of C3-like Finsler metrics with relatively isotropic mean Landsberg. We find some conditions under which these metrics reduce to relatively isotropic Landsberg metrics.

Keywords: Relatively isotropic mean Landsberg metric, relatively isotropic Landsberg metric.

1. Introduction

There are some interesting special forms of Cartan torsion and Landsberg tensor which have been obtained by some Finslerians $[2][4][13][15]$ $[2][4][13][15]$ $[2][4][13][15]$ $[2][4][13][15]$. The Finsler spaces having such special forms have been called C-reducible, semi-C-reducible, C2-Like, L-reducible (or P-reducible), general relatively isotropic Landsberg, and etc [\[5\]](#page-7-4)[\[6\]](#page-7-5). Let us remark the notion of Cartan torsion and Landsberg tensor. For a Finsler manifold (M, F) , the second derivatives of $\frac{1}{2}F_x^2$ at $y \in T_xM_0$ is an inner product \mathbf{g}_y on T_xM . The third order derivatives of $\frac{1}{2}F_x^2$ at $y \in T_xM_0$ is a symmetric trilinear forms \mathbf{C}_y on T_xM . We call \mathbf{g}_y and \mathbf{C}_y the fundamental form and the Cartan torsion, respectively. In [\[4\]](#page-7-1), Matsumoto introduced the notion of C-reducible Finsler metrics and proved that any Randers metric is

AMS 2020 Mathematics Subject Classification: 53B40, 53C30

This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0](https://creativecommons.org/licenses/by-nc/4.0/) International License.

Copyright © 2024 The Author(s). Published by University of Mohaghegh Ardabili

C-reducible. Later on, Matsumoto-Hōjō proves that the converse is true too $[1]$. A Randers metric $F = \alpha + \beta$ is just a Riemannian metric α perturbated by a one form β , which has important applications both in mathematics and physics [\[14\]](#page-7-7). The rate of change of \mathbf{C}_y along geodesics is the Landsberg curvature \mathbf{L}_y on T_xM for any $y \in T_xM_0$. F is said to be Landsbergian if $\mathbf{L} = 0$.

In [\[10\]](#page-7-8), Prasad-Singh by considering the special form of Cartan torsion of 3-dimensional Finsler spaces introduced a new class of Finsler spaces named by C3-like spaces which contains the class of semi-C-reducible spaces, as special case (see [\[7\]](#page-7-9), [\[8\]](#page-7-10), [\[9\]](#page-7-11)). A Finsler metric F on a manifold M of dimension $n \geq 3$ is called C3-like if its Cartan tensor is given by

$$
C_{ijk} = \left\{ a_i h_{jk} + a_j h_{ki} + a_k h_{ij} \right\} + \left\{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \right\},\tag{1.1}
$$

where $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ are homogeneous scalar functions on TM of degree -1 and 1, respectively. We have some special cases as follows:

(1) If $a_i = 0$, then we have

$$
C_{ijk} = \left\{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \right\}.
$$

Contracting it with g^{ij} implies that

$$
b_i = \frac{1}{3\|\mathbf{I}\|^2} I_i.
$$

Then F is a $C2$ -like metric;

(2) If $b_i = 0$, then we have

$$
C_{ijk} = \left\{ a_i h_{jk} + a_j h_{ki} + a_k h_{ij} \right\}.
$$

Contracting it with g^{ij} implies that

$$
a_i = \frac{1}{n+1} I_i.
$$

Then F is a C-reducible metric;

(3) Let us put

$$
a_i = \frac{p}{n+1} I_i
$$
, $b_i = \frac{q}{3||\mathbf{I}||^2} I_i$,

where $p = p(x, y)$ and $q = q(x, y)$ are scalar functions on TM. In this case, F reduces to a semi-C-reducible metric.

It is remarkable that, in [\[2\]](#page-7-0) Matsumoto-Shibata introduced the notion of semi-C-reducibility and proved that every non-Riemannian (α, β) -metric on a manifold M of dimension $n \geq 3$ is semi-C-reducible. Therefore the study of the class of C3-like Finsler spaces will enhance our understanding of the geometric meaning of (α, β) -metrics.

Theorem 1.1. Let (M, F) be an n-dimensional C3-like Finsler manifold $n \geq 3$ such that $b_i = b_i(x, y)$ is constant along Finslerian geodesics. Suppose that one of the following holds:

: (i) $\mathfrak{I} = -1/2$; : (*ii*) $a'_i = 2ca_i;$

where $\mathfrak{I} := b_m I^m$ and $a'_i = a_{i|j} y^j$. Then F is isotropic mean Landsberg metric $J = cF I$ if and only if it is isotropic Landsberg metric $L = cF C$.

2. Preliminaries

Let M be a n-dimensional C^{∞} manifold. Denote by T_xM the tangent space at $x \in M$, and by $TM = \bigcup_{x \in M} T_x M$ the tangent bundle of M.

A Finsler metric on M is a function $F: TM \to [0,\infty)$ which has the following properties:

(i) F is C^{∞} on $TM_0 := TM \setminus \{0\};$

(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM ,

(iii) for each $y \in T_xM$, the following quadratic form \mathbf{g}_y on T_xM is positive definite,

$$
\mathbf{g}_y(u,v) := \frac{1}{2} \left[F^2(y + su + tv) \right] |_{s,t=0}, \ \ u, v \in T_x M.
$$

Let $x \in M$ and $F_x := F|_{T_xM}$. To measure the non-Euclidean feature of F_x , define $\mathbf{C}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by

$$
\mathbf{C}_{y}(u,v,w) := \frac{1}{2} \frac{d}{dt} \left[\mathbf{g}_{y+tw}(u,v) \right] |_{t=0}, \ \ u, v, w \in T_xM.
$$

The family $\mathbf{C} := {\{\mathbf{C}_y\}_{y \in TM_0}}$ is called the Cartan torsion. It is well known that $C=0$ if and only if F is Riemannian.

For $y \in T_x M_0$, define mean Cartan torsion I_y by $I_y(u) := I_i(y)u^i$, where

$$
I_i := g^{jk} C_{ijk}.
$$

Here, $u = u^{i} \partial / \partial x^{i} |_{x}$. By Diecke Theorem, F is Riemannian if and only if $\mathbf{I}_y = 0.$

For $y \in T_xM_0$, define the Matsumoto torsion $\mathbf{M}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ by $\mathbf{M}_y(u, v, w) := M_{ijk}(y)u^iv^jw^k$ where

$$
M_{ijk} := C_{ijk} - \frac{1}{n+1} \{ I_i h_{jk} + I_j h_{ik} + I_k h_{ij} \},\,
$$

and $h_{ij} := FF_{y^i y^j} = g_{ij} - \frac{1}{F^2}g_{ip}y^p g_{jq}y^q$ is the angular metric. A Finsler metric F is said to be C-reducible if $\mathbf{M}_y = 0$. This quantity is introduced by Matsumoto [\[4\]](#page-7-1). Matsumoto proves that every Randers metric satisfies that $\mathbf{M}_y = 0$. A Randers metric $F = \alpha + \beta$ on a manifold M is just a Riemannian metric $\alpha = \sqrt{a_{ij}y^i y^j}$ perturbated by a one form $\beta = b_i(x)y^i$ on M such that $\|\beta\|_{\alpha} < 1$. Later on, Matsumoto-Hōjō proves that the converse is true too.

Lemma 2.1. ([\[1\]](#page-7-6)) A Finsler metric F on a manifold of dimension $n \geq 3$ is a Randers metric if and only if $\mathbf{M}_y = 0$, $\forall y \in TM_0$.

A Finsler metric is called semi-C-reducible if its Cartan tensor is given by

$$
C_{ijk} = \frac{p}{1+n} \{ h_{ij} I_k + h_{jk} I_i + h_{ki} I_j \} + \frac{q}{C^2} I_i I_j I_k,
$$

where $p = p(x, y)$ and $q = q(x, y)$ are scalar function on TM and $C^2 = I^i I_i$. Multiplying the definition of semi-C-reducibility with g^{jk} shows that p and q must satisfy $p + q = 1$. If $p = 0$, then F is called C2-like metric. In [\[2\]](#page-7-0), Matsumoto and Shibata proved that every (α, β) -metric is semi-C-reducible. Let us remark that an (α, β) -metric is a Finsler metric on M defined by $F :=$ $\alpha\phi(s)$, where $s = \beta/\alpha$, $\phi = \phi(s)$ is a C^{∞} function on the $(-b_0, b_0)$ with certain regularity, α is a Riemannian metric and β is a 1-form on M [\[3\]](#page-7-12).

Theorem 2.2. ([\[2\]](#page-7-0)[\[3\]](#page-7-12)) Let $F = \phi(\frac{\beta}{\alpha})\alpha$ be a non-Riemannian (α, β) -metric on a manifold M of dimension $n \geq 3$. Then F is semi-C-reducible.

The horizontal covariant derivatives of C along geodesics give rise to the Landsberg curvature $\mathbf{L}_y : T_xM \otimes T_xM \otimes T_xM \to \mathbb{R}$ defined by

$$
\mathbf{L}_y(u, v, w) := L_{ijk}(y)u^iv^jw^k,
$$

where $L_{ijk} := C_{ijk|s} y^s$, $u = u^i \frac{\partial}{\partial x^i} |_x$, $v = v^i \frac{\partial}{\partial x^i} |_x$ and $w = w^i \frac{\partial}{\partial x^i} |_x$. The family $\mathbf{L} := {\{\mathbf{L}_y\}_{y \in TM_0}}$ is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if $\mathbf{L} = 0$.

There are many connections in Finsler geometry $[11][12]$ $[11][12]$. In this paper, we use the Berwald connection and the h - and v - covariant derivatives of a Finsler tensor field are denoted by " | " and ", " respectively.

3. Proof of Theorem [1.1](#page-1-0)

In this section, we are going to prove Theorem [1.1.](#page-1-0) For this aim, we need the following.

Lemma 3.1. Let (M, F) be an n-dimensional C3-like Finsler manifold $n \geq 3$. Suppose that F is not Riemannian. Then the following hold:

$$
a_i(x, y)y^i = 0, \t b_i(x, y)y^i = 0.
$$
\t(3.1)

Proof. F is C3-like metric

$$
C_{ijk} = \left\{ a_i h_{jk} + a_j h_{ki} + a_k h_{ij} \right\} + \left\{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \right\},\tag{3.2}
$$

where $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ are scalar functions on TM. Multiplying (3.2) with g^{ij} implies that

$$
I_i = a_i h_{jk} + b_i I_j I_k. \tag{3.3}
$$

Contracting (3.2) with y^i yields

$$
a_i y^i h_{jk} + b_i y^i I_j I_k = 0.
$$
\n
$$
(3.4)
$$

Multiplying (3.4) with g^{jk} gives us

$$
(n-1)a_i y^i + ||\mathbf{I}||^2 b_i y^i = 0,
$$
\n(3.5)

which by considering the assumption $\|\mathbf{I}\| \neq 0$ is equal to

$$
b_i y^i = -\frac{1}{\|\mathbf{I}\|^2} (n-1) a_i y^i.
$$
 (3.6)

Putting (3.6) in (3.4) implies

$$
\[h_{jk} - \frac{1}{\|\mathbf{I}\|^2} (n-1) I_j I_k \] a_i y^i = 0. \tag{3.7}
$$

By contracting (3.7) with I^j and using

 $h_{jk}I^j = I_k$

we get

$$
(n-2)a_i y^i I_k = 0.
$$
 (3.8)

Since F is not Riemannian and $n \geq 3$, then (3.8) gives us

$$
a_i y^i = 0. \tag{3.9}
$$

Putting [\(3.9\)](#page-4-3) in [\(3.6\)](#page-4-0) yields

$$
b_i y^i = 0.\t\t(3.10)
$$

This completes the proof. \Box

Lemma 3.2. Let (M, F) be a C3-like Finsler manifold. Suppose that $b_i =$ $b_i(x, y)$ is constant along Finslerian geodesics and $I^m b_m = -1/2$. Then F is isotropic mean Landsberg metric if and only if it is isotropic Landsberg metric.

Proof. F is C3-like metric

$$
C_{ijk} = \left\{ a_i h_{jk} + a_j h_{ki} + a_k h_{ij} \right\} + \left\{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \right\},\tag{3.11}
$$

where $a_i = a_i(x, y)$ and $b_i = b_i(x, y)$ are scalar functions on TM. Multiplying (3.11) with g^{ij} implies that

$$
a_i = \frac{1}{n+1} \left\{ (1-2\Im)I_i - ||\mathbf{I}||^2 b_i \right\},\tag{3.12}
$$

where $\mathfrak{I} := b_m I^m$ and $\|\mathbf{I}\|^2 := I_m I^m$. By plugging (3.12) in (3.11) , we get

$$
C_{ijk} = \frac{1}{n+1} \Big\{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \Big\} - \frac{2 \Im}{n+1} \Big\{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \Big\}
$$

$$
- \frac{\|\mathbf{I}\|^2}{n+1} \Big\{ b_i h_{jk} + b_j h_{ki} + b_k h_{ij} \Big\} + \Big\{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \Big\}, \ (3.13)
$$

or equivalently

$$
M_{ijk} = -\frac{2\Im}{n+1} \Big\{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \Big\} - \frac{\|\mathbf{I}\|^2}{n+1} \Big\{ b_i h_{jk} + b_j h_{ki} + b_k h_{ij} \Big\} + \Big\{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \Big\}. \tag{3.14}
$$

By taking a horizontal derivation of (3.14) , we have

$$
\widetilde{M}_{ijk} = -\frac{2}{n+1} (J^m b_m + I^m b'_m) \Big\{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \Big\} \n- \frac{2\Im}{n+1} \Big\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \Big\} - \frac{\|\mathbf{I}\|^2}{n+1} \Big\{ b'_i h_{jk} + b'_j h_{ki} + b'_k h_{ij} \Big\} \n- \frac{1}{n+1} (J^m I_m + I^m J_m) \Big\{ b_i h_{jk} + b_j h_{ki} + b_k h_{ij} \Big\} \n+ \Big\{ b_i J_j I_k + b_i I_j J_k + b_j J_i I_k + b_k J_i I_j + b_k I_i J_j \Big\} \n+ \Big\{ b'_i I_j I_k + b'_j I_i I_k + b'_k I_i I_j \Big\},
$$
\n(3.15)

where $b'_i = b_{i|s}y^s$ and

$$
\widetilde{M}_{ijk} = L_{ijk} - \frac{1}{n+1} \Big\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \Big\}.
$$

Let $b_i' = 0$. Then (3.15) reduces to following

$$
L_{ijk} = \frac{1}{n+1} \Big\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \Big\} - \frac{2 \Im}{n+1} \Big\{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \Big\} - \frac{2}{n+1} \Big\{ J_i h_{jk} + J_j h_{ki} + J_k h_{ij} \Big\} b_m I^m - \frac{1}{n+1} (J^m I_m + I^m J_m) \Big\{ b_i h_{jk} + b_j h_{ki} + b_k h_{ij} \Big\} + \Big\{ b_i J_j I_k + b_i I_j J_k + b_j J_i I_k + b_j I_i J_k + b_k J_i I_j + b_k I_i J_j \Big\}
$$
(3.16)

Let ${\cal F}$ is isotropic mean Landsberg metric

$$
\mathbf{J} = cF\mathbf{I},
$$

where $c = c(x)$ is a scalar function on M. Then (3.16) became as follows

$$
L_{ijk} = \frac{cF}{n+1} \Big\{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \Big\} - \frac{4cF\Im}{n+1} \Big\{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \Big\} - \frac{2cF \|\mathbf{I}\|^2}{n+1} \Big\{ b_i h_{jk} + b_j h_{ki} + b_k h_{ij} \Big\} + 2cF \Big\{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \Big\}.
$$
 (3.17)

By (3.13) we have

$$
\left\{b_iI_jI_k + I_ib_jI_k + I_iI_jb_k\right\} = C_{ijk} - \frac{1}{n+1}\left\{I_ih_{jk} + I_jh_{ki} + I_kh_{ij}\right\} + \frac{7}{n+1}\left\{I_ih_{jk} + I_jh_{ki} + I_kh_{ij}\right\} + \frac{\|\mathbf{I}\|^2}{n+1}\left\{b_ih_{jk} + b_jh_{ki} + b_kh_{ij}\right\}(3.18)
$$

Putting (3.18) in (3.17) yields

$$
L_{ijk} = 2cFC_{ijk} - \frac{cF(1+23)}{n+1} \Big\{ I_i h_{jk} + I_j h_{ki} + I_k h_{ij} \Big\}.
$$
 (3.19)

Since $\mathfrak{I} = -1/2$, then [\(3.19\)](#page-6-0) reduces to $L_{ijk} = 2cFC_{ijk}$. \Box

Lemma 3.3. Let (M, F) be a C3-like Finsler manifold, such that $b_i = b_i(x, y)$ is constant along Finslerian geodesics and $a'_i = 2ca_i$. Then F is isotropic mean Landsberg metric $J = cF I$ if and only if it is isotropic Landsberg metric $\mathbf{L} = cF\mathbf{C}.$

Proof. Let F be a $C3$ -like metric

$$
C_{ijk} = \left\{ a_i h_{jk} + a_j h_{ki} + a_k h_{ij} \right\} + \left\{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \right\},\tag{3.20}
$$

By taking a horizontal derivation of (3.20) , we get

$$
L_{ijk} = \left\{ a'_i h_{jk} + a'_j h_{ki} + a'_k h_{ij} \right\} + \left\{ b'_i I_j I_k + b'_j I_i I_k + b'_k I_i I_j \right\} + \left\{ b_i J_j I_k + b_i I_j J_k + b_j J_i I_k + b_j I_i J_k + b_k J_i I_j + b_k I_i J_j \right\}.
$$
 (3.21)

Let F is isotropic mean Landsberg metric $J = cFI$. Then (3.21) became as follows

$$
L_{ijk} = \left\{ a'_i h_{jk} + a'_j h_{ki} + a'_k h_{ij} \right\} + \left\{ b'_i I_j I_k + b'_j I_i I_k + b'_k I_i I_j \right\} + 2cF \left\{ b_i I_j I_k + I_i b_j I_k + I_i I_j b_k \right\} . (3.22)
$$

By (3.20) we have

$$
\left\{b_i I_j I_k + I_i b_j I_k + I_i I_j b_k\right\} = C_{ijk} - \left\{a_i h_{jk} + a_j h_{ki} + a_k h_{ij}\right\}.
$$
 (3.23)

Putting (3.23) in (3.22) yields

$$
L_{ijk} = 2cFC_{ijk} + \left\{ (a'_i - 2ca_i)h_{jk} + (a'_j - 2ca_j)h_{ki} + (a'_k - 2ca_k)h_{ij} \right\} + \left\{ b'_iI_jI_k + b'_jI_iI_k + b'_kI_iI_j \right\}.
$$
 (3.24)

Since $b_i' = 0$ and $a_i' = 2ca_i$, then [\(3.24\)](#page-6-5) reduces to

$$
L_{ijk} = 2cFC_{ijk}.\tag{3.25}
$$

This completes the proof. \Box

Proof of Theorem [1.1:](#page-1-0) By Lemmas [3.2](#page-4-8) and [3.3,](#page-6-6) we get the proof. \Box

REFERENCES

- 1. M. Matsumoto and S. Hōjō, A conclusive theorem for C-reducible Finsler spaces, Tensor. N. S. 32(1978), 225-230.
- 2. M. Matsumoto and C. Shibata, On semi-C-reducibility, T-tensor and S4-1ikeness of Finsler spaces, J. Math. Kyoto Univ. 19(1979), 301-314.
- 3. M. Matsumoto, Theory of Finsler spaces with (α, β) -metric, Rep. Math. Phys. 31(1992), 43-84.
- 4. M. Matsumoto, On Finsler spaces with Randers metric and special forms of important tensors, J. Math. Kyoto Univ. 14(1974), 477-498.
- 5. B. Najafi, A. Tayebi and M.M. Rezaei, On general relatively isotropic L-curvature Finsler metrics, Iran. J. Sci. Tech. Trans. A, 29(2005), 357-366.
- 6. B. Najafi, A. Tayebi and M. M. Rezaei, On general relatively isotropic mean Landsberg metrics, Iran. J. Sci. Tech. Trans. A, 29(2005), 497-505.
- 7. S. K. Narasimhamurthy, S. T. Aveesh and P. Kumar, On v-curvature tensor of C3 like conformal Finsler spaces, Acta Univ. Sapientiae, Math. 2(2009), 101-108.
- 8. H.D. Pande, P.N. Tripathi and B.N. Prasad, On a special form of the hv-curvature tensor of Berwald's connection B of Finsler space, Indian. J. Pure. Appl. Math. 25(1994), 1275-1280.
- 9. C. M. Prasad and O. P. Dube, On T-tensor and v-curvature tensor of C3-like Finsler spaces, Indian J.Pure. Appl. Math, 23(1992), 791-795.
- 10. B. N. Prasad and J. N. Singh, On C3-like Finsler spaces, Indian. J. Pure. Appl. Math, 19(1988), 423-428.
- 11. A. Tayebi, E. Azizpour and E. Esrafilian, On a family of connections in Finsler geometry, Publ. Math. Debrecen, $72(2008)$, 1-15.
- 12. A. Tayebi and B. Najafi, Shen's Process on Finslerian Connections, Bull. Iran. Math. Society. **36**(2) (2010), 57-73.
- 13. A. Tayebi and E. Peyghan, Finsler Metrics with Special Landsberg Curvature, Iran. J. Sci. Tech. Trans A2, Vol. 33, No. A3, (2009), 241-248.
- 14. A. Tayebi and E. Peyghan, On Ricci tensors of Randers metrics, J. Geom. Phys. 60(2010), 1665-1670.
- 15. A. Tayebi and E. Peyghan, Special Berwald Metrics, Symmetry. Int. Geom. Meth. Appl. 6(2010), 008.

Received: 07.04.2024 Accepted: 07.05.2024