Characteristics of T--conformal mappings

Document Type : Original Article

Authors

Department of Mathematics‎, ‎Vali-e-Asr University of Rafsanjan‎, ‎Rafsanjan‎, ‎Iran

Abstract

In this paper, we introduce the notion of T-conformal transformations and T-conformal maps between Riemannian manifolds. Here, T stands for a smooth (1,1)-tensor field defined on the domain of these maps. We start by defining what it means for a map to be T-conformal and also dwell on some basic properties of such type maps. We next specialize our discussion to the situation when the map T satisfies the condition ∇T = 0. Accordingly, we prove Liouville's theorem for T-conformal maps between space forms Rn(c) as an application under the condition ∇T = 0. The proof relies upon properties of T-conformal maps proved earlier. Broadly, the paper seeks to provide a general understanding of conformal mappings in the presence of a tensor field T and show how classical results such as Liouville's theorem apply.

Keywords


  • 1. M. Aminian, Introduction of T–harmonic maps. Pure. Appl. Math, 30(2) (2023), 109–
    129.
  • 2. A. Antonopoulos, The conformal mapping as a limiting case of mapping. Boll. Geod.
    Scienze. Affini, 65(1) (2006), 25–34.
  • 3. P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds. Number 29. Oxford University Press, 2003.
  • 4. E. Bedford, What is... a biholomorphic mapping. Notices. American. Math. Soc,
    59(2012), 812–818.
  • 5. D. E. Blair, Inversion theory and conformal mapping, volume 9. American Mathematical Soc., 2000.
  • 6. L. A. Cabral, A. C. Lucizani, and A. J. S. Capistrano, Graded-index medium profiles
    associated with curvature and conformal maps, 2022 Conference on Lasers and ElectroOptics (CLEO), (2022), 1–2.
  • 7. W. P. Calixto, B. Alvarenga, J. C. da Mota, L. d. C. Brito, M. Wu, A. J. Alves, L. M.
    Neto, C. F. Antunes, et al, Electromagnetic problems solving by conformal mapping: a
    mathematical operator for optimization. mathematical problems in engineering, 2010.
  • 8. T. Cheng, H. Yang, and S. Yang, Beltrami system and 1-quasiconformal embeddings in
    higher dimensions. arXiv preprint arXiv:1709.07324, 2017.
  • 9. S. R. Das and A. Jevicki, Large-N collective fields and holography. Phys. Rev. D,
    68(2003), 044011.
  • 10. J. W. Dettman, Mathematical methods in physics and engineering. Courier Corporation,
    2013.
  • 11. R. R. L. Heinen, Conformal mappings and the Schwarz-Christoffel transformation. PhD
    thesis, University of Missouri–Columbia, 2017.
  • 12. A. E. Jones, A plane map from a sphere by double projection. Eos, Trans. American.
    Geophys. Union, 25(1944), 219–220.
  • 13. M. Kapranov, Conformal maps in higher dimensions and derived geometry. arXiv
    preprint arXiv:2102.11507, 2021.
  • 14. D. W. Koon and C. J. Knickerbocker, What do you measure when you measure resistivity. Review of Scientific Instruments, 63(1992), 207–210.
  • 15. U. Leonhardt, Optical conformal mapping. Science, 312(5781) (2006):, 777–1780.
  • 16. D. Ntalampekos, Rigidity and continuous extension for conformal maps of circle domains. Trans. American. Math. Soc., 2023.
  • 17. B. Olea and F. J. Palomo, Lorentzian metrics null-projectively related to semiRiemannian metrics. J. Geom. Analysis, 33(2):71, 2023.
  • 18. P. J. Olver, Complex analysis and conformal mapping. University of Minnesota, 806,
    2017.
  • 19. B. O’Neill, Semi-Riemannian Geometry: with applications to relativity. pure and applied Mathematics, Acad. Press, 1983.
  • 20. O. Philips’ Gloeilampenfabrieken, A method of measuring specific resistivity and hall
    effect of discs of arbitrary shape, Philips Res. Rep, 13(1) (1958), 1–9.
  • 21. M. S. Selig and M. D. Maughmer, Multipoint inverse airfoil design method based on
    conformal mapping. AIAA Journal, 30(5) (1992), 1162–1170.