In this paper, we introduce the notion of T-conformal transformations and T-conformal maps between Riemannian manifolds. Here, T stands for a smooth (1,1)-tensor field defined on the domain of these maps. We start by defining what it means for a map to be T-conformal and also dwell on some basic properties of such type maps. We next specialize our discussion to the situation when the map T satisfies the condition ∇T = 0. Accordingly, we prove Liouville's theorem for T-conformal maps between space forms Rn(c) as an application under the condition ∇T = 0. The proof relies upon properties of T-conformal maps proved earlier. Broadly, the paper seeks to provide a general understanding of conformal mappings in the presence of a tensor field T and show how classical results such as Liouville's theorem apply.
1. M. Aminian, Introduction of T–harmonic maps. Pure. Appl. Math, 30(2) (2023), 109– 129.
2. A. Antonopoulos, The conformal mapping as a limiting case of mapping. Boll. Geod. Scienze. Affini, 65(1) (2006), 25–34.
3. P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds. Number 29. Oxford University Press, 2003.
4. E. Bedford, What is... a biholomorphic mapping. Notices. American. Math. Soc, 59(2012), 812–818.
5. D. E. Blair, Inversion theory and conformal mapping, volume 9. American Mathematical Soc., 2000.
6. L. A. Cabral, A. C. Lucizani, and A. J. S. Capistrano, Graded-index medium profiles associated with curvature and conformal maps, 2022 Conference on Lasers and ElectroOptics (CLEO), (2022), 1–2.
7. W. P. Calixto, B. Alvarenga, J. C. da Mota, L. d. C. Brito, M. Wu, A. J. Alves, L. M. Neto, C. F. Antunes, et al, Electromagnetic problems solving by conformal mapping: a mathematical operator for optimization. mathematical problems in engineering, 2010.
8. T. Cheng, H. Yang, and S. Yang, Beltrami system and 1-quasiconformal embeddings in higher dimensions. arXiv preprint arXiv:1709.07324, 2017.
9. S. R. Das and A. Jevicki, Large-N collective fields and holography. Phys. Rev. D, 68(2003), 044011.
10. J. W. Dettman, Mathematical methods in physics and engineering. Courier Corporation, 2013.
11. R. R. L. Heinen, Conformal mappings and the Schwarz-Christoffel transformation. PhD thesis, University of Missouri–Columbia, 2017.
12. A. E. Jones, A plane map from a sphere by double projection. Eos, Trans. American. Geophys. Union, 25(1944), 219–220.
13. M. Kapranov, Conformal maps in higher dimensions and derived geometry. arXiv preprint arXiv:2102.11507, 2021.
14. D. W. Koon and C. J. Knickerbocker, What do you measure when you measure resistivity. Review of Scientific Instruments, 63(1992), 207–210.
15. U. Leonhardt, Optical conformal mapping. Science, 312(5781) (2006):, 777–1780.
16. D. Ntalampekos, Rigidity and continuous extension for conformal maps of circle domains. Trans. American. Math. Soc., 2023.
17. B. Olea and F. J. Palomo, Lorentzian metrics null-projectively related to semiRiemannian metrics. J. Geom. Analysis, 33(2):71, 2023.
18. P. J. Olver, Complex analysis and conformal mapping. University of Minnesota, 806, 2017.
19. B. O’Neill, Semi-Riemannian Geometry: with applications to relativity. pure and applied Mathematics, Acad. Press, 1983.
20. O. Philips’ Gloeilampenfabrieken, A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Philips Res. Rep, 13(1) (1958), 1–9.
21. M. S. Selig and M. D. Maughmer, Multipoint inverse airfoil design method based on conformal mapping. AIAA Journal, 30(5) (1992), 1162–1170.
Aminian, M., & Namjoo, M. (2024). Characteristics of T--conformal mappings. Journal of Finsler Geometry and its Applications, 5(1), 97-114. doi: 10.22098/jfga.2024.14548.1115
MLA
Mehran Aminian; Mehran Namjoo. "Characteristics of T--conformal mappings", Journal of Finsler Geometry and its Applications, 5, 1, 2024, 97-114. doi: 10.22098/jfga.2024.14548.1115
HARVARD
Aminian, M., Namjoo, M. (2024). 'Characteristics of T--conformal mappings', Journal of Finsler Geometry and its Applications, 5(1), pp. 97-114. doi: 10.22098/jfga.2024.14548.1115
VANCOUVER
Aminian, M., Namjoo, M. Characteristics of T--conformal mappings. Journal of Finsler Geometry and its Applications, 2024; 5(1): 97-114. doi: 10.22098/jfga.2024.14548.1115