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Abstract. In this paper, we introduce the notion of T -conformal transforma-

tions and T -conformal maps between Riemannian manifolds. Here, T stands

for a smooth (1,1)-tensor field defined on the domain of these maps. We start

by defining what it means for a map to be T -conformal and also dwell on some

basic properties of such type maps. We next specialize our discussion to the

situation when the map T satisfies the condition ∇T = 0. Accordingly, we

prove Liouville’s theorem for T -conformal maps between space forms Rn(c) as

an application under the condition ∇T = 0. The proof relies upon properties of

T -conformal maps proved earlier. Broadly, the paper seeks to provide a general

understanding of conformal mappings in the presence of a tensor field T and

show how classical results such as Liouville’s theorem apply.
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1. Introduction

Conformal mappings have a significant position in the world of mathemat-

ics, physics as well as engineering. They are important in addressing complex
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problems that are characterized with geometries that pose challenges. In effect,

such mappings are effectively put in use by many scientific disciplines since due

to expression through functions of a complex variable, they are often encoun-

tered in natural phenomena. This is related to wide applicability supported by

large studies and references [5, 10, 18, 21, 20, 14, 7, 15].

Essentially, one can think of a function that is a conformal map as being a

function across C, the set of complex numbers, that respects angles between

curves. This inherent characteristic makes conformal maps useful in various

applications where the preservation of angles is important [11, 2, 4, 6, 16]. The

property of length preservation is one of the most central properties in math-

ematics describing conformal maps as those angle-preserving transformations.

However, it should be noted that the same maps do not preserve lengths.

In order to formalize more rigorously what conformal mappings are, let U ,

V be open subsets of Rn. A function f : U → V is said to be conformal at a

point u0 ∈ U if it does not change the angles between the directed curves going

through u0 and does not reverse their orientation.

The idea of conformality goes further, intrinsically, to the maps between

Riemannian manifolds. In particular, for Riemannian geometry two metrics g

and h on a smooth manifold M , will be conformally equivalent if they relate

by means g = uh for a positive function u on M , hence the named conformal

factor [17].

Conformal map is a smooth map that under the context of Riemannian

manifolds called conformal with respect to the metric if its pulled back metric

should be conformally equivalent with the original one [3, 19]. An example of

stereographic projection of a sphere to a plane demonstrating these concepts

find play in the real world, augmented by a point at infinity, would be a classic

example [12].

One of Liouville’s theorems reveals one of the key differences between two

dimensions and higher dimensions. Actually, in dimensions three and above, an

arbitrary conformal map between open subsets of Euclidean spaces factorizes

into the composition of three transformations: a homothety, an isometry, and

a special conformal transformation [13, 8, 9].

Building on classical conformal maps, we would like to introduce the con-

cept of T -conformal maps as a result of research [1]. Concretely, define T -

conformality with respect to vector spaces endowed with scalar product where

T is linear transformation. This innovative approach allows the generation of

T -conformal mappings, thus enabling the study of intrinsic properties.

We will focus on a few aspects of the properties exuded by T -conformal

transformations and particularly how they differ from the well-known conformal

maps. This study includes the systematic investigation of its mathematical

properties in depth as well as recognising more precise applications. For the
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reason that exploring these properties offers an enhancement understanding of

T -conformality and its importance in a higher science discipline.

To make the idea even more concrete, we also extend our notion of T -

conformality to maps between Riemannian manifolds. If fact, it turns out that

this extension is in just the right progression that one should follow after the

initial realization of the ideas applied initially on vector spaces. This is mainly

due to the fact that it makes it possible to apply the T -conformal map in an

even richer and more geometrical context.

A major contribution of our work is the derivation of a system of Partial

Differential Equations (PDEs) satisfied by T -conformal maps on space forms

Rn(c), with some additional properties of maps like ∇T = 0. This PDE is

developed on the premise of foundational principles ”Liouville’s theorem for

conformal maps” wherein a very common approach followed nowadays. By

understanding and applying T -conformal maps, these PDEs are established as

a crucial step toward their wider practical use.

While note that through our work we extend as well as remain motivated

by existing literature [3, 19], the results that we put forth with respect to

T -conformality would be new and original. The novelty as well as the innova-

tive manner in which we approach the matter of conformal mapping has main

implications in extension of existing theoretical work.

As we proceed further in the discussion of the concept, we are optimistic

about digging up more and more results and developments in our application

of the study of T -conformal maps.

The field of conformal mappings, which has applications in various scientific

fields, has now become richer and satisfied with the notion of T -conformal

maps. The possibilities for future researches and applications from this new

concept not only broaden the scope of conformal mapping. The deep research

of properties of T -conformal maps will show enormous prospects for numerous

applications, which will generate new findings and thereby to innovations far

not only in respect of mathematics.

2. Fundamentals of T–conformality

In this section, we focus on a critical concept named as T -conformality,

which is relevant to understanding linear transformations that operate on vector

spaces with an inner product. We start off by explaining WT , a symbol that

stands for a subspace perpendicular to another subspace W , as influenced by

a transformation labeled T . There’s an important finding we discuss, 2.2.

This finding connects the dimensions of W and WT , proves that W⊥ equals

the result of applying T to WT , and also shows that if T is symmetric, then

(WT )T = W . From here, we go on to establish a theorem that says if the

outcome of applying T to W stays within W , then the space V splits as a

direct sum of W and WT .
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Next up, we investigate how a linear transformation T : V → V on a space

V , interacts with functions that map V to a different space V . At the heart of

our exploration are the notions of being T -conformal and becoming a T -linear

isometry. We detail what it means for a linear map, say A : V → V , to align

perfectly with T , either by being T -conformal or a T -linear isometry. What

this basically boils down to is how well A keeps the inner product relation-

ships the same, in sync with T . Several key points about these special types

of transformations, A, come out in our analysis, particularly when it comes to

whether T is symmetric or invertible. For instance, if A preserves the confor-

mity with T , then it turns out that T has to be isomorphism. As well, we lay

out under what conditions the one might find a T -linear isometry linking two

spaces equipped with an inner product, V and V . By formally connecting T

and A in this manner, give us a deeper understanding of interplays between

linear mappings on a vector space.

Definition 2.1. Let g be a scalar product on a vector space V , T : V → V be

a linear transformation, and W be a subspace of V . We put

WT = {v ∈ V : g(Tv,w) = 0 ∀w ∈W}.

As we see, WT is a subspace of V . Note that the nondegeneracy of g implies

that V T = kerT .

Lemma 2.2. If W be a subspace of a scalar product space (V, g), dimV = n,

T : V → V be a linear isomorphism, then

(1) dim(W ) + dim(WT ) = n,

(2) W⊥ = TWT ,

(3) if T is symmetric relative to g, then (WT )T =W .

Proof. (i) Let e1, ..., en be a basis for V , which for a k , e1, ..., ek is a basis for

W . Now v ∈WT if and only if g(Tv, ei) = 0 for 1 ≤ i ≤ k, which in coordinate

terms is
∑n
A,B=1 giBTBAvA = 0. This is k linear equations in n unknowns, and

since the rows of the coefficient matrix are linearly independent, so the matrix

has rank k. Hence by linear algebra the space of solutions has dimension n−k.
(ii) Let v ∈ W⊥, then for some x, Tx = v and g(Tx,w) = 0 for every w ∈ W .

So x ∈ WT and v = Tx ∈ TWT . Therefore W⊥ ⊂ TWT . Also obviously

TWT ⊂W⊥. Hence W⊥ = TWT .

(iii) Let v ∈ W and w ∈ WT , then g(Tv,w) = g(v, Tw) = 0. Therefore

W ⊂ (WT )T and by (i) these two subspaces have the same dimension, hence

they are equal. □

Theorem 2.3. Let subspace W of a scalar product space V be nondegenerate,

T : V → V be a linear isomorphism and TW ⊂W then V is the direct sum of

W and WT and TW =W .
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Proof. By a standard vector space identity dim(W +WT ) + dim(W ∩WT ) =

dimW + dimWT . According to 2.2, the right-hand side is n = dimV . Hence

W +WT = V if and only if W ∩WT = 0. Thus either of these two conditions

is equivalent to V = W ⊕ WT . If v ∈ W ∩ WT , then for every w ∈ W ,

g(Tv,w) = 0. Hence by nondegeneracy of W , Tv = 0 and so v = 0. Now since

T is isomorphism, the two subspaces W and TW have the same dimension,

hence they are equal. □

Definition 2.4. Let V and V have scalar products g and h respectively, and

T : V → V be a linear transformation. We call a linear transformation A :

V → V , a T -conformal if there is a number Λ ̸= 0 such that

h(ATv,Aw) = Λ g(v, w) for all v, w ∈ V. (2.1)

Remark 2.5. Equation (2.1) is equivalent to A∗AT = ΛI and so Λ =
1
n

∑n
i=1 h(ATei, Aei) = 1

n trg(A
∗AT ) where A∗ is the adjoint operator and

{ei}ni=1 is the orthonormal basis for V .

Lemma 2.6. Let V and V have scalar products g and h respectively, and

T : V → V be a linear transformation. If A : V → V , is a T -conformal

transformation, then T is symmetric relative to g, T is isomorphism and A is

one-to-one, and so

h(Av,Aw) = Λ g(T−1v, w) for all v, w ∈ V, (2.2)

and when h is an inner product, then ΛT is positive definite relative to g.

Proof. T is symmetric relative to g, because

g(w, Tv) =
1

Λ
h(ATw,ATv) =

1

Λ
h(ATv,ATw) = g(v, Tw).

By non-degeneracy of g, T and A are one-to-one and so T is an isomorphism.

Also when h is an inner product, if v ̸= 0, then

g(v,ΛTv) = h(ATv,ATv) > 0.

Therefore ΛT is positive definite relative to g. □

Remark 2.7. Let A : V → V be a linear isomorphism and consider an or-

thonormal basis for positive definite scalar product space V . In this basis by

equation (2.2), we have A is T -conformal if and only if AtA = ΛT−1.

Example 2.8. Let ΛT and so ΛT−1 be a positive definite symmetric real matrix

and
√
ΛT−1 be its unique positive definite symmetric real square root, and T

and A be n× n real matrices. Then AtA = ΛT−1 if and only if A = B
√
ΛT−1

for an unique orthogonal matrix B ∈ O(n). In special case, consider

ΛT = Λ

(
a b

b c

)
,



Characteristics of T–Conformal Mappings 103

be a positive definite real matrix, then algebra shows that AtA = ΛT−1 if and

only if

A =

(√
α cos θ

√
β cosϕ√

α sin θ
√
β sinϕ

)
,

where α = Λc
ac−b2 , β = Λa

ac−b2 , and cos(θ − ϕ) = Λ
|Λ|

−b√
ac
.

Definition 2.9. Let V and V have scalar products g and h respectively, and

T : V → V be a linear transformation. We call a linear isomorphism A : V →
V , a T -linear isometry provided

h(ATv,Aw) = g(v, w) for all v, w ∈ V. (2.3)

Lemma 2.10. Let V and V have scalar products g and h respectively, and

T : V → V be a linear transformation. If A : V → V , is a T -linear isometry,

then T is symmetric relative to g, T is isomorphism, and so

h(Av,Aw) = g(T−1v, w) for all v, w ∈ V, (2.4)

and when g and h are inner products, then T is positive definite relative to g.

Proof. T is symmetric relative to g, because g(w, Tv) = h(ATw,ATv) =

h(ATv,ATw) = g(v, Tw). By nondegeneracy of g, T is one-to-one and so

T is an isomorphism. Also when g and h are inner products, if v ̸= 0, then

g(v, Tv) = h(ATv,ATv) > 0, therefore T is positive definite relative to g. □

Remark 2.11. Let A : V → V be a linear isomorphism and consider an

orthonormal basis for positive definite scalar product space V . In this basis by

equation (2.4), we have A is a T -linear isometry if and only if AtA = T−1.

Lemma 2.12. Consider scalar product spaces (V, g), (V , h) and (V , l). If

A1 : V → V is a T -linear isometry and A2 : V → V is a linear isometry then

A2A1 is a T -linear isometry of V into V .

Proposition 2.13. Consider inner product spaces (V, g) and (V , h) which have

the same dimension and suppose T : V → V be a linear isomorphism, positive

definite and symmetric relative to g. Then there exists a T -linear isometry

from V to V .

Proof. By Lemma 2.10, we can choose an orthonormal basis for V which diago-

nalize T . Let {ei}ni=1 be the basis that makes diagonal T , and {λi}ni=1, λi > 0,

be its corresponding eigenvalues of T . Consider an orthonormal basis {fi}ni=1

for V . Now defining Aei =
1√
λi
fi, we get A as a T -linear isometry from V to

V . □

Proposition 2.14. Let T : V → V be a linear transformation on an inner

product space (V, g). If T is a T -isometry, then T is identity.
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Proof. By Lemma 2.10, we suppose {ei}ni=1 be the basis that makes diagonal

T , and {λi}ni=1, λi > 0, be its corresponding eigenvalues of T . By equation

(2.3), g(T 2ei, T ei) = λ3i = 1 for all i, so λi = 1. Therefore T is identity. □

Proposition 2.15. Let V and V have scalar products g and h respectively,

and T : V → V be a linear transformation. Consider A : V → V be a

T -linear isometry and W be a subspace of V . Then AW⊥ = (ATW )⊥ and

AWT = (AT 2W )⊥.

Proof. The following holds

AW⊥ = {Av| g(v, w) = 0 ∀w ∈W}.

By Definition 2.9,

AW⊥ = {Av| h(Av,ATw) = 0 ∀w ∈W}.

So AW⊥ ⊂ (ATW )⊥. By Lemma 2.10, T is a linear isomorphism. Then

by Lemma 2.2-(i), these two subspaces have the same dimension, hence they

are equal. By Lemma 2.10, T is symmetric relative to g, and so similarly

AWT = (AT 2W )⊥. □

3. T -Weakly Conformal Maps and Their Characterizations

In this section, we talk about T -weakly conformal maps. These involve a

smooth (1,1)-tensor field, noted as T . If we have a smooth map ψ from one

Riemannian manifold (M,h) to another (M, l), it’s called T -weakly conformal

at a point x in M if there is some number Λ(x) making the differential dψx
equate ⟨dψx(TxX), dψx(Y )⟩l = Λ(x)⟨X,Y ⟩h for all tangent vectors X,Y at x.

In simple terms, the map dψx changes how we see angles based on T , but in

a consistent way. The number Λ(x) is known as the T -square conformality

factor. A function ψ is T -weakly conformal if it follows this rule at every point

of M .

Some key results are then established, including: necessary and sufficient

conditions for a map to be T -weakly conformal in terms of injectivity of dψ

and positivity of ΛT ; how to recognize T -weakly conformal maps when they

are laid out between regular Euclidean spaces; also important Liouville-type

theorems explain the overall nature of these types of maps on Rn. This idea

takes the classical definition of conformality and weakly conformal maps and

remixes it. This provides a framework to study distorted notions of angle

preservation and their implications.

Definition 3.1. Let T be a smooth (1, 1)–tensor field on Riemannian manifold

(M,h), ψ : (Mn, h) → (M
m
, l) be a smooth map from (M,h) to a Riemannian

manifold (M, l). We call ψ is T -weakly conformal (T -conformal) at x if there

is a number Λ(x) (Λ(x) ̸= 0), call T -square conformality factor at x, such that〈
dψ(T (X)), dψ(Y )

〉
l
= Λ(x) ⟨X,Y ⟩h , (3.1)
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for any X,Y ∈ TxM . The map ψ is called T -weakly conformal (T -conformal)

if equation (3.1) (and Λ(x) ̸= 0) holds for all x ∈ M . In this case, taking the

trace in (3.1) shows that Λ :M → R is smooth function.

Remark 3.2. Equation(3.1) is equivalent to dψ∗dψT = ΛI and so Λ =
1
n

∑n
i=1 ⟨dψ(T (ei)), dψ(ei)⟩l =

1
n trh(dψ

∗dψT ) where dψ∗ is the adjoint oper-

ator and {ei}ni=1 is an orthonormal frame on M .

Proposition 3.3. Let T be a smooth tensor field on Riemannian manifold

(M,h), ψ : (Mn, h) → (M
m
, l) be a T -weakly conformal map. If T -square

conformality factor Λ(x) ̸= 0, then Tx : TxM → TxM is invertable, symmetric

relative to Riemannian metric h and Λ(x)Tx is positive definite relative to h.

Especially if ψ is a T -conformal map, then T is invertable, symmetric relative

to Riemannian metric h and ΛT is positive definite relative to h.

Theorem 3.4. Let T be a smooth tensor field on Rn, and ψ : Rn → Rn be

a smooth map from Rn into Rn. If ψ is a T -conformal map with T -square

conformality factor Λ then

ψ(x) =

∫
B
√
ΛT−1dx+ b,

for an unique orthogonal tensor field B on Rn and b ∈ Rn. Especially if T is a

constant tensor field and Λ is constant function, so if ψ is a T -conformal map

with T -square conformality factor Λ then

ψ(x) = B
√
ΛT−1x+ b,

for an unique orthogonal matrix B ∈ O(n) (note B is constant tensor field,

since ψ(
√
Λ−1Tx) is an isometry) and b ∈ Rn. In addition, if n = 2 and

T =

(
a b

b c

)
,

then

ψ(x1, x2) =

(√
α cos θ

√
β cosϕ√

α sin θ
√
β sinϕ

)(
x1
x2

)
+

(
b1
b2

)
,

where

α =
Λc

ac− b2
, β =

Λa

ac− b2
, cos(θ − ϕ) =

Λ

|Λ|
−b√
ac
,

and b1 and b2 are real constants.

Proposition 3.5. Let T be a smooth tensor field on Riemannian manifold

(M,h), ψ : (Mn, h) → (M
m
, l) be a smooth map from (M,h) to a Riemannian

manifold (M, l). Then ψ is T -weakly conformal at x with T -square conformality

factor Λ(x) if and only if precisely one of the following holds:

• dψx ◦ Tx = 0, and so Λ(x) = 0;

• dψx : TxM → Tψ(x)M is injective and T -conformal at x with T -square

conformality factor Λ(x) ̸= 0.



106 Mehran Aminian and Mehran Namjoo

Especially if ψ is a T -conformal map, then ψ is an immersion.

Proof. Let dψx ◦ Tx ̸= 0, and so Λ(x) ̸= 0. If dψx(X) = 0 for some X ∈ TxM ,

then by equation (3.1) we get that Λ(x) ⟨X,X⟩h = 0, and since Λ(x) ̸= 0,

X = 0. Therefore dψx is an injective linear transformation. The converse is

obvious. □

An immediate result of Proposition 3.5 is the following.

Proposition 3.6. Let T be a smooth tensor field on Riemannian manifold

(M,h), ψ : (Mn, h) → (M
m
, l) be a T -weakly conformal map. Let dim(M) <

dim(M). Then dψ ◦ T = 0, especially if T is invertable, then ψ is constant on

connected components of M .

Proposition 3.7. Let T be a smooth tensor field on Riemannian manifold

(M,h), ψ : (Mn, h) → (M
m
, l) be a T -weakly conformal map. If T is invertable

and anti-symmetric relative to Riemannian metric h, then ψ is constant on

connected components of M .

Proposition 3.8. Let T be a smooth tensor field on Riemannian manifold

(M,h), ψ : (Mn, h) → (M
m
, l) be a smooth map. Assume T is invertable, then

ψ is a T -weakly conformal map with T -square conformality factor Λ if and only

if it is a T t-weakly conformal map with T t-square conformality factor Λ, and

hence it is a T+T t

2 -weakly conformal map with T+T t

2 -square conformality factor

Λ.

Remark 3.9. Let ψ : (Mn, h) → (M
m
, l) is a non-constant smooth map and

T be a invertable and anti-symmetric relative to Riemannian metric h. So ψ

is a T+T t

2 -weakly conformal map with T -square conformality factor Λ = 0. But

by Proposition 3.7, it is a not a T -weakly conformal map.

Proposition 3.10. Let T be a smooth tensor field on Riemannian manifold

(M,h), ψ1 : (Mn, h) → (M
m
, l) be a T -weakly conformal map with T -square

conformality factor Λ1 and ψ2 : (M, l) → (M,k) be a weakly conformal map

with square conformality factor Λ2. Then ψ2 ◦ψ1 is a T -weakly conformal map

with T -square conformality factor Λ1(Λ2 ◦ ψ1).

Proposition 3.11. Let T be a smooth tensor field on Riemannian manifold

(Mn, h), the identity map i : (M,h) → (M, l) be a T -weakly conformal map

with T -square conformality factor Λ. Then ⟨TX, Y ⟩l = Λ ⟨X,Y ⟩h for any

vector fields X,Y on M , and Λ = 1
n trlT . Especially if h = l, then T = ΛI.

Proposition 3.12. Let T be a smooth tensor field on one dimensional Rie-

mannian manifold (M1, h), ψ : (M1, h) → (M
m
, l) be a smooth map. Then

ψ is a T -weakly conformal map with T -square conformality factor Λ(x) =

T (x) ⟨dψ(X), dψ(X)⟩l where X ∈ TxM and X is a unit vector.



Characteristics of T–Conformal Mappings 107

Example 3.13. Let ψ be a smooth function on R and T be a smooth tensor

field on R. Then ψ is T -weakly conformal function with T -square conformality

factor Λ(x) = T (x)(ψ′(x))2.

Proposition 3.14. Let T be a smooth tensor field on Riemann surface M2,

ψ : M2 → (M
m
, l) be a T -weakly conformal map. Then for any complex

coordinate z on M , the following holds

〈
dψ(T

∂

∂z
), dψ(

∂

∂z
)

〉
l

= 0.

4. The Connection and Curvature Tensor for T–Conformal Maps

The offered section affords a few crucial consequences regarding conformal

maps among Riemannian manifolds in the presence of a smooth tensor field T .

After introducing key definitions inclusive of T -local isometries, several useful

formulas and properties are derived. Lemma 4.1 gives a formula concerning the

covariant derivative of the differential of a T -conformal map ψ to quantities

related to T , the conformality factor Λ, and the connections on the domain.

Other consequences characterize when T -local isometries are determined by

their differential at a point, when flows of a vector field are T -local isometries,

and a formula relating the curvature tensor of a T -conformal map. Overall,

the text develops the theory of conformal geometry in the presence of a tensor

subject, which, namely, is likely to be useful in contexts where a tensor field

naturally arises.

Lemma 4.1. Let T be a smooth tensor field on Riemannian manifold (Mn, h),

and ψ : (Mn, h) → (M
m
, l) be a smooth map. if ψ is a T -conformal map with

T -square conformality factor Λ, then we have the following formulae:

∇Z2
dψ(Z1) =

1

2
dψ
{
(∇Z2

ln|Λ|)Z1 + 2∇Z2
Z1 + (∇Z1

ln|Λ|)Z2

−
〈
T−1Z1, Z2

〉
T (∇ ln|Λ|)− (∇Z1

T )T−1Z2 − (∇Z2
T )T−1Z1

−
∑
k

〈
(∇ekT

−1)Z1, Z2

〉
Tek

}
+B(Z1, Z2),

where Z1, Z2 are vector fields on M , {ei}ni=1 is an orthogonal frame on M and

B(Z1, Z2) is vertical part of ∇Z2
dψ(Z1) which is orthogonal to image of ψ, and

B is tensorial in its two arguments and it is symmetric, B(Z1, Z2) = B(Z2, Z1).
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Proof. Let {ei}ni=1 be an orthonormal frame on M such that for every i, j,

∇ejei = 0 at p ∈M . By Koszul formula we have at p〈
∇Z2

dψ(Z1), dψ(Tek)
〉
l
=

1

2

{
∇Z2

⟨dψ(Z1), dψ(Tek)⟩l +∇Z1
⟨dψ(Z2), dψ(Tek)⟩l (4.1)

−∇Tek ⟨dψ(Z2), dψ(Z1)⟩l − ⟨dψ(Z2), dψ[Z1, T ek]⟩ − ⟨dψ(Z1), dψ[Z2, T ek]⟩
+ ⟨dψ(Tek), dψ[Z2, Z1]⟩} . (4.2)

By Proposition 3.3, T is invertable. Therefore, by equations (3.1), (4.1) and

the relation ⟨dψ(X), dψ(Y )⟩l = Λ
〈
T−1X,Y

〉
h
for any vector fields X,Y onM ,

we have at any point p〈
∇Z2

dψ(Z1), dψ(Tek)
〉
l
=

1

2

{
∇Z2

(Λ ⟨Z1, ek⟩) +∇Z1
(Λ ⟨Z2, ek⟩)−∇Tek

(
Λ
〈
T−1Z2, Z1

〉)
−⟨dψ(Z2), dψ((∇Z1T )ek −∇TekZ1)⟩ − ⟨dψ(Z1), dψ((∇Z2T )ek −∇TekZ2)⟩
+ ⟨dψ(Tek), dψ([Z2, Z1])⟩}

=
1

2
{(∇Z2Λ) ⟨Z1, ek⟩+ 2Λ ⟨∇Z2Z1, ek⟩+ (∇Z1Λ) ⟨Z2, ek⟩

− (∇TekΛ)
〈
T−1Z2, Z1

〉
− Λ

〈
(∇TekT

−1)Z2, Z1

〉
− Λ

〈
(∇Z1

T )T−1Z2, ek
〉

−Λ
〈
(∇Z2T )T

−1Z1, ek
〉}

, (4.3)

We have for every vector field Z on M ,

dψ(Z) =
1

Λ

∑
k

⟨dψ(Z), dψ(Tek)⟩l dψ(ek). (4.4)

At first assume n = m, then by Proposition 3.5, ψ is an immersion, and so

by equality of dimensions of M and M , ψ is a submersion. Therefore we can

assume ∇Z2dψ(Z1) = dψ(Z3) for some vector field Z3 on M . Now we get by

equations (4.3) and (4.4),

∇Z2
dψ(Z1) =

1

Λ

∑
k

〈
∇Z2

dψ(Z1), dψ(Tek)
〉
l
dψ(ek)

=
1

2Λ
{(∇Z2

Λ)dψ(Z1) + 2Λ dψ(∇Z2
Z1) + (∇Z1

Λ)dψ(Z2)

−
〈
T−1Z1, Z2

〉
dψ(T (∇Λ))− Λ

〈
(∇ekT

−1)Z1, Z2

〉
dψ(Tek)

−Λ dψ((∇Z1
T )T−1Z2)− Λ dψ((∇Z2

T )T−1Z1)
}
.

Now if n < m, by considering horizontal and vertical parts of ∇Z2
dψ(Z1), we

get the result. □

Definition 4.2. Let T be a smooth tensor field on Riemannian manifold

(M,h), ψ : (M,h) → (M, l) be a smooth map from (M,h) to a Riemann-

ian manifold (M, l). We call ψ is a T -local isometry provided each differential
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map dψx : TxM → Tψ(x)M is a T -linear isometry, and in addition if ψ is a

diffeomorphism, we call it a T -isometry.

Remark 4.3. As we see, each T -local isometry is a T -conformal map with

T -square conformality factor Λ = 1.

Remark 4.4. In view of the inverse function theorem, each T -local isometry

is locally a T -isometry that is each point x of M has a neighborhood U such

that ψ|U is an T -isometry of U onto a neighborhood of ψ(x) in M .

A T -local isometry is uniquely determined by its differential map at a single

point provided that ∇T = 0.

Proposition 4.5. Let T be a smooth tensor field on Riemannian manifold M ,

ϕ, ψ : M → M be T -local isometries of a connected Riemannian manifold M

to a Riemannian manifold M . If ∇T = 0 and there is a point x ∈M such that

dϕx = dψx, then ϕ = ψ.

Proof. Let A = {p ∈ M : dϕp = dψp}. By continuity, A is closed in M . Since

A is nonempty it suffices to show that A is open. We assert that if p ∈ A then

any normal neighborhood U of p is contained in A . If r ∈ U there is a vector

v ∈ TpM such that γv(1) = expp(v) = r. Since ∇T = 0 and Λ = 1, by Lemmas

2.10 and 4.1, we get ϕ and ψ preserve Levi-Civita connections. Thus geodesics

in M are carried to geodesics in N by ϕ, ψ. Hence

ϕ(r) = ϕ(γv(1)) = γdϕv(1) = γdψv(1) = ψ(γv(1)) = ψ(r).

Therefore ϕ = ψ on U and so dϕq = dψq for all q ∈ U . □

Proposition 4.6. Let T be a smooth tensor field on Riemannian manifold

(M,h) and V be a smooth vector field on M . If all local flows of V are T -local

isometries, then T is identity.

Proof. If v, w are tangent vectors at a point in the domain of the flow, by

hypothesis we have ⟨dψt(Tv), dψt(w)⟩ = ⟨v, w⟩ where {ψt} is a local flow of V .

By putting t = 0 and nondegeneracy of the metric we get T = I. □
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Lemma 4.7. Let T be a smooth tensor field on Riemannian manifold (Mn, h),

and ψ : (Mn, h) → (M
n
, l) be a smooth map from M into M . If ψ is a T -

conformal map with T -square conformality factor Λ and ∇T = 0, then

R̄(Z3, Z2)dψ(Z1) =

1

4
dψ {4R(Z3, Z2)Z1 + 2 ⟨∇Z3∇ ln|Λ|, Z1⟩Z2 − 2 ⟨∇Z2∇ ln|Λ|, Z1⟩Z3

+ (∇Z1 ln|Λ|)(∇Z2 ln|Λ|)Z3 − (∇Z3 ln|Λ|)(∇Z1 ln|Λ|)Z2

− 2
〈
T−1Z1, Z2

〉
T (∇Z3∇ ln|Λ|) + 2

〈
T−1Z1, Z3

〉
T (∇Z2∇ ln|Λ|)

−
〈
T−1Z1, Z2

〉
(∇T (∇ ln|Λ|) ln|Λ|)Z3 +

〈
T−1Z1, Z3

〉
(∇T (∇ ln|Λ|) ln|Λ|)Z2

+
(〈
T−1Z1, Z2

〉
(∇Z3

ln|Λ|)−
〈
T−1Z1, Z3

〉
(∇Z2

ln|Λ|)
)
T (∇ ln|Λ|)

}
,

where Z1, Z2, Z3 are vector fields on M , and R and R̄ denote the curvature

tensors of M and M , respectively.

Proof. Let {ei}ni=1 be an orthonormal frame on M such that for every i, j,

∇ejei = 0 at p ∈ M . By Proposition 3.3, T is invertable. We have ∇T = 0

and so ∇T−1 = 0, then we get by Lemma 4.1 at p,

∇ek∇eidψ(ej) =

1

2
∇ekdψ

{
(∇ei ln|Λ|)ej + 2∇eiej + (∇ej ln|Λ|)ei −

〈
T−1ej , ei

〉
T (∇ ln|Λ|)

}
.

(4.5)

Denote

Z1 = (∇ei ln|Λ|)ej + 2∇eiej + (∇ej ln|Λ|)ei −
〈
T−1ej , ei

〉
T (∇ ln|Λ|) . (4.6)

Therefore by Lemma 4.1, equations (4.5) and (4.6) at p,

∇ek∇eidψ(ej) =
1

2
∇ekdψ(Z1)

=
1

4
dψ {(∇ek ln|Λ|)Z1 + 2∇ekZ1 + (∇Z1 ln|Λ|)ek

−
〈
T−1Z1, ek

〉
T (∇ ln|Λ|)

}
=

1

4
dψ
{
(∇ek ln|Λ|)(∇ei ln|Λ|)ej + (∇ek ln|Λ|)(∇ej ln|Λ|)ei

+ 2(∇ek∇ei ln|Λ|)ej + 4∇ek∇eiej (4.7)

+ 2(∇ek∇ej ln|Λ|)ei − 2
〈
T−1ej , ei

〉
T (∇ek∇ ln|Λ|)

+ (∇ei ln|Λ|)(∇ej ln|Λ|)ek + (∇ej ln|Λ|)(∇ei ln|Λ|)ek
−
〈
T−1ej , ei

〉
(∇T (∇ ln|Λ|) ln|Λ|)ek −

〈
T−1ej , ek

〉
(∇ei ln|Λ|)T (∇ ln|Λ|)

−
〈
T−1ei, ek

〉
(∇ej ln|Λ|)T (∇ ln|Λ|)

}
. (4.8)
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So by equation (4.7), we have at p,

R̄(ek, ei)dψ(ej) = ∇ek∇eidψ(ej)−∇ei∇ekdψ(ej)

=
1

4
dψ {4R(ek, ei)ej + (∇ej ln|Λ|)(∇ei ln|Λ|)ek − (∇ek ln|Λ|)(∇ej ln|Λ|)ei

+ 2(∇ek∇ej ln|Λ|)ei − 2(∇ei∇ej ln|Λ|)ek − 2
〈
T−1ej , ei

〉
T (∇ek∇ ln|Λ|)

+ 2
〈
T−1ej , ek

〉
T (∇ei∇ ln|Λ|)

−
〈
T−1ej , ei

〉
(∇T (∇ ln|Λ|) ln|Λ|)ek +

〈
T−1ej , ek

〉
(∇T (∇ ln|Λ|) ln|Λ|)ei

−
〈
T−1ej , ek

〉
(∇ei ln|Λ|)T (∇ ln|Λ|) +

〈
T−1ej , ei

〉
(∇ek ln|Λ|)T (∇ ln|Λ|)

}
,

Now, by noting at p, (∇ek∇ej ln|Λ|)ei = ⟨∇ek∇ ln|Λ|, ej⟩ and using the tenso-

rial properties, we get the result. □

5. PDE Systems for T–Conformal Maps

Let Rn(c) be the simply connected Riemannian space form of constant sec-

tional curvature c which is the Euclidean space Rn, for c = 0, and the Hyper-

bolic space Hn, for c = −1, and the Euclidean sphere Sn, for c = +1.

The following theorem is an exploitation of proof of ”Liouville’s theorem for

conformal maps” for T -conformal map on Rn(c) when ∇T = 0.

Theorem 5.1. Let T be a smooth tensor field on Rn(c), and ψ : U → Rn(c̄)

be a smooth map from an open subset U of (Rn(c), h) into (Rn(c̄), l). If ψ is

a T -conformal map with T -square conformality factor Λ and ∇T = 0, then Λ

satisfy the following system of PDEs on U :

c̄Λ

(
hks

∑
r

T−1
rj hri − his

∑
r

T−1
rj hrk

)
− c (hjihks − hjkhis)

= 2his
∑
l,t

(
∂hlt

∂xk

∂ ln|Λ|
∂xl

+ hlt
∂2 ln|Λ|
∂xk∂xl

+
∑
r

hlr
∂ ln|Λ|
∂xl

Γtkr

)
htj

− 2hks
∑
l,t

(
∂hlt

∂xi

∂ ln|Λ|
∂xl

+ hlt
∂2 ln|Λ|
∂xi∂xl

+
∑
r

hlr
∂ ln|Λ|
∂xl

Γtir

)
htj

+
∂ ln|Λ|
∂xj

∂ ln|Λ|
∂xi

hks −
∂ ln|Λ|
∂xk

∂ ln|Λ|
∂xj

his

− 2
∑

l,t,r′,s′

(
∂hlt

∂xk

∂ ln|Λ|
∂xl

+ hlt
∂2 ln|Λ|
∂xk∂xl

+
∑
r

hlr
∂ ln|Λ|
∂xl

Γtkr

)
Ts′tT

−1
r′j hr′ihs′s

+ 2
∑

l,t,r′,s′

(
∂hlt

∂xi

∂ ln|Λ|
∂xl

+ hlt
∂2 ln|Λ|
∂xi∂xl

+
∑
r

hlr
∂ ln|Λ|
∂xl

Γtir

)
Ts′tT

−1
r′j hr′khs′s
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−
∑

l,t,r′,s′

∂ ln|Λ|
∂xl

∂ ln|Λ|
∂xs′

Ts′tT
−1
r′j hr′ihksh

lt

+
∑

l,t,r′,s′

∂ ln|Λ|
∂xl

∂ ln|Λ|
∂xs′

Ts′tT
−1
r′j hr′khish

lt

+
∑
l,t,r′

(
hr′i

∂ ln|Λ|
∂xk

− hr′k
∂ ln|Λ|
∂xi

)
∂ ln|Λ|
∂xl

T−1
r′j Ttrhtsh

lr,

for every i, j, k, s = 1, . . . , n, where x1, . . . , xn is a local coordinate system on

U , Tij =
∑
k

〈
T ∂
∂xj

, ∂
∂xk

〉
hki and Γkij are Christoffel symbols of Levi-Civita

connection of h. Especially if c = c̄ = 0, then Λ satisfy the following system of

PDEs on U :

2
∂2 ln|Λ|
∂xk∂xj

δis − 2
∂2 ln|Λ|
∂xi∂xj

δks +
∂ ln|Λ|
∂xj

∂ ln|Λ|
∂xi

δks −
∂ ln|Λ|
∂xk

∂ ln|Λ|
∂xj

δis

+ 2

n∑
l=1

Tls

(
T−1
jk

∂2 ln|Λ|
∂xi∂xl

− T−1
ji

∂2 ln|Λ|
∂xk∂xl

)

+
(
T−1
jk δis − T−1

ji δks

) n∑
l,r=1

Tlr
∂ ln|Λ|
∂xl

∂ ln|Λ|
∂xr

+

(
T−1
ji

∂ ln|Λ|
∂xk

− T−1
jk

∂ ln|Λ|
∂xi

) n∑
l=1

Tls
∂ ln|Λ|
∂xl

= 0 ,

for every i, j, k, s = 1, . . . , n.

Proof. By Proposition 3.5, ψ is an immersion, and so locally diffeomorphism.

The curvature tensor of Rn(c) is

R(X,Y )Z = c {⟨Z, Y ⟩X − ⟨Z,X⟩Y } ,

so by Lemma 4.7, and straightforward computations we get the result. □

In continuation, consider a constant tensor field T on Rn (so as a matrix)

which is symmetric and definite, and two types of maps of Euclidean space Rn

which we use them later.

(1) T -homotheties. Let be ψ : Rn → Rn defined as

ψ(x) = B
√
ΛT−1x+ b,

for some orthogonal matrix B, non-zero number Λ such that ΛT is

positive definite, and vector b ∈ Rn.
(2) T-inversions in a sphere. T -inversion in a sphere with radius r and

center a ∈ Rn, defined as φ : Rn \ {a} → Rn \ {a},

φ(x) =
r2 (x− a)

⟨T (x− a),x− a⟩
+ a,

as we see φ−1(x) = φ(x).
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Let T be a constant tensor field on Rn, and |T | = T if T is positive definite,

|T | = −T if T is negative definite, and ψ : U → Rn be a smooth map from

an open subset U of Rn into Rn. If ψ is a T -conformal map and T is positive

definite then ψ(
√
|T |x) is a conformal map. Therefore every T -conformal map

is a precomposition of conformal map with the
√

|T |−1idRn resticted on an

open set. For n ≥ 3, every conformal map is the restriction of an elemet of

the Möbius group, i.e., it is the composition of homotheties and inversions

(Proposition 2.3.14 of [3]). Therefore for n ≥ 3, every T -conformal map is a

precomposition of element of the Möbius group with the
√

|T |−1idRn restricted

on an open set. Here for more detailed study, we state its direct proof in the

following theorem.

Theorem 5.2 (Liouville’s theorem for T -conformal maps). Let T be a constant

tensor field on Rn, and ψ : U → Rn be a smooth map from an open subset U of

Rn into Rn (n ≥ 3). If ψ is a T -conformal map then it is a T -homothety or the

precomposition of a T -homothety with a T−1-inversion restricted on U , and so

it is a precomposition of element of the Möbius group with the
√

|T |−1idRn |U .

Proof. If Λ is constant, then by Theorem 3.4, ψ is a T -homothety, so suppose

that Λ is non-constant. Because of similarity, we assume that T is positive

definite constant tensor, and so Λ = λ2 for some smooth positive function λ on

U . Writing λi =
∂λ
∂xi

, λij =
∂2λ

∂xj∂xi
, and using Theorem 5.1, we have for every

i, j, k, s = 1, . . . , n,

(λjkλ− λkλj)δis − (λjiλ− λiλj)δks + λjλiδks − λkλjδis

+
∑
l

Tls

(
T−1
jk (λilλ− λiλl)− T−1

ji (λklλ− λkλl)
)

+
(
T−1
jk δis − T−1

ji δks

)∑
l,r

Tlrλlλr

+
(
T−1
ji λk − T−1

jk λi

)∑
l

Tlsλl = 0. (5.1)

Set u = 1
λ . On putting i = j into equation (5.1), with i, k, s distinct (this is

possible since n ≥ 3), we obtain

T−1
ii [Tu′′]sk = T−1

ik [Tu′′]si, (5.2)

where u′′ = [ ∂2u
∂xr∂xl

] is the Hessian matrix of u. Since T is positive definite, we

have for every r, l distinct, T−1
rr > 0 and T−1

rr T
−1
ll − (T−1

rl )2 ̸= 0. By equation

(5.2),

[Tu′′]sk =
T−1
ik [Tu′′]si

T−1
ii

=
(T−1
ik )2[Tu′′]sk

T−1
ii T

−1
kk

,
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so [Tu′′]sk = 0, and therefore Tu′′ is diagonal. Now put i = j, k = s, with i, k

distinct. This yields

u
( 1

T−1
ii

∂2u

∂x2i
+ [Tu′′]kk

)
= ⟨Tu′, u′⟩ , (5.3)

where

u′ = (
∂u

∂x1
, . . . ,

∂u

∂xn
)t

is the gradient of u. From equation (5.3), we deduce [Tu′′]ii = [Tu′′]kk
(i, k = 1, . . . , n), and therefore Tu′′ is coefficient of identity matrix. Setting

ρ = [Tu′′]ii, from the equation (5.3) we obtain ⟨Tu′, u′⟩ = 2ρu. Differentiation

of this equation shows that ρ must be constant. We thus obtain the system of

equations: {
u′′ = ρ T−1,

⟨Tu′, u′⟩ = 2ρu.
(5.4)

If ρ ≡ 0, then u is constant and ψ is a T -homothety. Otherwise, one can see

that the system (5.4) has general solution

u =
ρ

2

n∑
i=1

T−1
ii (xi − ai)

2 =
ρ

2

〈
T−1(x− a),x− a

〉
, (5.5)

where a = (a1, . . . , an)
t is a constant vector. Consider T−1-inversion

φ(x) =
2 (x− a)

ρ ⟨T−1(x− a),x− a⟩
+ a,

and compose it with ψ, we get ψ ◦ φ is a T -isometry. It follows that ψ is the

precomposition of a T -homothety with a T−1-inversion. □

If the map is globally defined on Rn, T -inversions cannot occur and so we

have the following description.

Theorem 5.3 (T -conformal transformations of Rn). Let T be a constant tensor

field on Rn, and ψ : Rn → Rn with n ≥ 3 be a T -conformal map. Then it is a

T -homothety.
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