An example of conformally Osserman manifold

Document Type : Original Article

Authors

1 DÉPARTEMENT DE MATHÉMATIQUES, UFR SATIC, UNIVERSITÉ ALIOUNE DIOP, Bamby, Senegal

2 DÉPARTEMENT DE MATHÉMATIQUES, UFR SATIC, UNIVERSITÉ ALIOUNE DIOP, Bambey, Senegal

3 DÉPARTEMENT DE MATHÉMATIQUES ET INFORMATIQUES, FST, UNIVERSITÉ DE NOUAKCHOTT, Akjoujt, Mauritanie

Abstract

In this paper, we investigate pseudo-Riemannian manifolds those eigenvalues of the Weyl conformal Jacobi operators are constant on the unit sphere bundles. Using a result of [4], we give an explicit construction of conformally Osserman manifold which is not locally conformally flat.

Keywords


  • 1. N. Blaˇzi´c, Conformally Osserman Lorentzian manifolds, Kragujevac J. Math. 28 (2005),
    85-96.
  • 2. N. Blaˇzi´c and P. Gilkey, Conformally Osserman manifolds and conformally complex
    space forms, Int. J. Geom. Methods. Mod. Phys. 1 (2004), 97-106.
  • 3. N. Blaˇzi´c and P. Gilkey, Conformally Osserman manifolds and self-duality in Riemannian geometry, Differential Geometry and Its Application, 15-18, MATFYZPRESS,
    Prague, 2005.
  • 4. N. Blaˇzi´c, P. Gilkey, S. Nikcevi´c and U. Simon, The spectral geometry of the Weyl
    conformal tensor, Banach Center Publ. 69 (2005), 195-203.
  • 5. M. Brozos-V´azquez, E. Garc´ıa-R´ıo, and R. V´azquez-Lorenzo, Locally conformally flat
    multidimensional cosmological models and generalized Friedmann-Robertson-Walker
    spacetimes, J. Cosmol. Astropart. Phys.(2004), no.12, 008, 13 pp.
  • 6. M. Brozos-V´azquez, E. Garc´ıa-R´ıo, and R. V´azquez-Lorenzo, Complete locally conformally flat manifolds of negative curvature, Pacific J. Math. 226 (2006), no.2, 201-219.
  • 7. A. S. Diallo, Examples of conformally 2-nilpotent Osserman manifolds of signature (2, 2),
    Afr. Diaspora J. Math. 9 2010, no.1, 96-103.
  • 8. A. S. Diallo and M. Hassirou, Examples of Osserman metrics of (3, 3)-signature, J. Math.
    Sci. Adv. Appl. 7 (2011), (2), 95-103.
  • 9. A. S. Diallo, M. Hassirou and O. T. Issa, Walker Osserman metric of signature (3, 3),
    Bull. Math. Anal. Appl. 9 (2017), (4), 21-30.
  • 10. E. Garc´ıa-Rio, D. N. Kupeli and R. V´azquez-Lorenzo, Osserman manifolds in semiRiemannian, Lecture Notes in Mathematics 1777, Springer Verlag, Berlin, 2002.
  • 11. P. Gilkey, Geometric properties of natural operators defined by the Riemann curvature
    tensor, World Scientific Publishing Co., Inc., River Edge, NJ, 2001. ISBN: 981-02-4752-4.
  • 12. Y. Nikolayevsky, Conformally Osserman manifolds, Pacific J. Math. 245 (2010), no.2,
    315-358.