On Riemannian and Ricci curvatures of Ingarden-Támassy metrics

Document Type : Original Article

Author

Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

Abstract

In this paper, we study reversibility of Riemann Curvature and Ricci curvature for the Ingarden-Támassy metric and prove two global results. First, we prove that a Ingarden-Támassy metric is R-reversible if and only if si = 0, sij|k = 0. Then we show that a Ingarden-Támassy metric is Ricci-reversible if and only if si = 0.

Keywords


  • 1. S. B´acs´o, X. Cheng and Z. Shen, Curvature properties of (α, β)-metrics, Advanced Studies in Pure Mathematics, Math. Soc. Japan. 48(2007), 73–110.
  • 2. M. Crampin, Randers spaces with reversible geodesics, Publ. Math. Debrecen. 67(34)
    (2005), 401–409.
  • 3. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific, Singapore, (2005).
  • 4. X. Cheng, Z. Shen and Y. Tian, A class of Einstein (α, β)-metrics, Israel J. Math.
    192(1)(2012), 221–249.
  • 5. R. S. Ingarden and L. T´amassy, The point Finsler spaces and their physical applications
    in electron optics and thermodynamics, Math. Comput. Modelling, 20(1994), 93–107.
  • 6. B. Li and Z. Shen, On Randers metrics of quadratic Riemann curvature, Intern. J. Math.
    20(2009), 1–8.
  • 7. I.M. Masca, S.V. Sabau and H. Shimada, Reversible geodesics for (α, β)-metrics, International. J. Math. 21(8) (2010), 1071–1094.
  • 8. I.M. Masca, S.V. Sabau and H. Shimada, Necessary and sufficient conditions for two
    dimensional (α, β)-metrics with reversible geodesics, preprint.
  • 9. M. Matsumoto, A slope of a hill is a Finsler surface with respect to a time measure, J.
    Math. Kyoto. Univ. 29(1980), 17–25.
  • 10. Z. Shen and G. Yang, Randers metrics of reversible curvature, Intern. J. Math. 24(1)
    (2013), 1350006 (16 pages).
  • 11. H. Shimada and S.V. Sabau, An introduction to Matsumoto metric, Nonlinear Analysis:
    RWA. 63(2005) 165–168.
  • 12. A. Tayebi, E. Peyghan and H. Sadeghi, On Matsumoto-type Finsler metrics, Nonlinear
    Analysis: RWA, 13(2012), 2556–2561.
  • 13. A. Tayebi, T. Tabatabaeifar and E. Peyghan, On the second approximate Matsumoto
    metric, Bull. Korean Math. Soc. 51(1) (2014), 115–128.
  • 14. A. Tayebi and T. Tabatabaeifar, Matsumoto metric of reversible curvatures, Acta. Math.
    Acad. Paedagogicae Nyiregyhaziensis, 32(2016), 165–200.
  • 15. B. Tiwari, G.K. Prajapati and R. Gangopadhyay, On Finsler spaces with rational spray
    coefficiients, Differ. Geom. 21(2019), 180–188.