The necessary and sufficient condition for Cartan’s second curvature tensor which satisfies recurrnce and birecurrence property in generalized Finsler spaces

Document Type : Original Article

Authors

1 Department of Mathematics, Abyan University, Abyan 80425, Yemen

2 Department of Mathematics, Taiz University, Taiz P.O. Box 6803, Yemen

3 Department of Mathematics, Dr.Babasaheb Ambedkar Marathwada University, Pratishthan Mahavidyalaya, Paithan, India

4 Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India

5 Department of Mathematics, Hamedan Branch, Islamic Azad University,Hamedan, Iran

Abstract

The recurrence and birecurrence property in Finsler space have been studied by the Finslerian
geometrics. The aim of this paper is to obtain the necessary and sufficient condition for Cartan’s second
curvature tensor that is recurrnt and birecurrent in generalized BP−recurrent space and generalized
BP−birecurrent space, respectively. We discuss certain identities belong to the mentioned spaces. Further,
we end up this paper with some illustrative examples.

Keywords


  • 1. A. A. Abdallah, A. A. Navlekar, and K. P. Ghadle, On study generalized BP − recurrent
    Finsler space, Int. J. Math. Trends. Tech. 65(4), (2019), 74–79.
  • 2. A. A. Abdallah, A. A. Navlekar, and K. P. Ghadle, The necessary and sufficient condition
    for some tensors which satisfy a generalized BP − recurrent Finsler space, Int. J. Sci.
    Engineering. Res. 10(11), (2019), 135–140.
  • 3. A. A. Abdallah, A. A. Navlekar, and K. P. Ghadle, On P∗− and P −reducible of Cartan’s
    second curvature tensor, J. Appl. Sci. Comput. VI(XI), (2019), 13–24.
  • 4. A. A. Abdallah, A. A. Navlekar, and K. P. Ghadle, On certain generalized BP − birecurrent Finsler space, J. Int. Acad. Phys. Sci. 25(1), (2021), 63–82.
  • 5. A. A. Abdallah, A. A. Hamoud, A. Navlekar, K. Ghadle, B. Hardan, and H. Emadifar,
    On birecurrent for some tensors in various Finsler spaces, Journal of Finsler Geometry
    and its Applications, 4(1) (2023), 33–44.
  • 6. A. A. Abdallah, A. A. Navlekar, K. P. Ghadle, and A. A. Hamoud, Decomposition for
    Cartan’s second curvature tensor of different order in Finsler spaces, Nonlinear. Func.
    Anal. Appl. 27(2), (2022), 433–448.
  • 7. A. M. Al-Qashbari, Recurrence decompositions in Finsler space, J. Math. Anal. Model.
    1(1), (2020), 77–86.
  • 8. A. H. Awed, On study of generalized Ph−recurrent Finsler space, M.Sc. Thesis, University of Aden, (Aden) (Yemen), (2017).
  • 9. D. Bao, S. Chern, and Z. Shen, An introduction to Riemann - Finsler geometry, Springer,
    (2000).
  • 10. S. S. Chern, and Z. Shen, Riemann-Finsler geometry, World Scientific, Singapore, (2004).
  • 11. M. Dahl, An brief introduction to Finsler geometry, Springer, (2006).
  • 12. M. Gheorghe, The indicatrix in Finsler geometry, Anal. Stiintifice. Uiv. Matematica. Tomul LIII, (2007), 163–180.
  • 13. W. H. Hadi, Study of certain types of generalized birecurrent in Finsler spaces, Ph.D.
    Thesis, Faculty of Education - Aden, University of Aden, (Aden), (Yemen), (2016).
  • 14. K. Mandal, On generalized h−recurrent Finsler connection, Nepal. J. Math. Sci. 2(1),
    (2021), 35–42.
  • 15. M. Matsumoto, On h−isotropic and Ch− recurrent Finsler, J. Math. Kyoto Univ., 11
    (1971), 1–9.
  • 16. M. Matsumoto, Finsler Geometry in the 20th-Century, (Published in Handbook of
    Finsler Geometry, edited by P. L. Antonelli), Kluwer Academic Publishers, Dordrecht,
    I(2003).
  • 17. X. Mo, An introduction to Finsler geometry, Peking University, World scientific, (China),
    (2000).
  • 18. S. I. Ohta, Comparison Finsler geometry, Springer International Publishing, (2021).
  • 19. P. N. Pandey, and S. K. Shukla, On hypersurfaces of a recurrent Finsler space, J. Int.
    Acad. Phys. Sci. 15(5), (2011), 33-45.
  • 20. P. N. Pandey, S. Saxena, and A. Goswani, On a generalized H− recurrent space, J. Int.
    Acad. Phys. Sci. 15(2), (2011), 201–211.
  • 21. C. Pfeifer, S. Heefer and A. Fuster, Identifying Berwald Finsler Geometries, Differ.
    Geom. Appl. 79, (2021), 101817. 1–12.
  • 22. F. Y. Qasem, On transformations in Finsler spaces, D. Phil. Thesis, University of Allahabad, (Allahabad), (India), (2000).
  • 23. F. Y. Qasem, On generalized H-birecurrent Finsler space, Int. J. Math. Appl. 4(2-B),
    (2016), 51–57.
  • 24. F. Y. Qasem and A. A. Abdallah, On study generalized BR−recurrent Finsler space,
    Int. J. Math. Appl. 4(2-B), (2016), 113–121.
  • 25. F. Y. Qasem and S. M. Baleedi, Necessary and sufficient condition for generalized recurrent tensor, Imp. J. Int. Res. 2(11), (2016), 769–776.
  • 26. F. Y. Qasem and W. H. Hadi, On a generalized BR− birecurrent Finsler space, American, Sci. Res. J. Engineering. Tech. Sci. 19(1), (2016), 9–18.
  • 27. F. Y. Qasem and A. A. Saleem, On Whjkh generalized birecurrent Finsler space, J. Faculty.
    Edu. University of Aden. 11(2010), 21–32.
  • 28. F. Y. Qasem and A. A. Saleem, On generalized BN−recurrent Finsler space, Elect.
    Aden. Univ. J. 7(2017), 9–18.
  • 29. H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin Gottingen,
    (1959); 2nd Edit. (in Russian), Nauka, (Moscow), 1981.
  • 30. A. A. Saleem, On certain a generalized N(|m)− recurrent Finsler space, Univ. Aden. J.
    Nat. Appl. Sci. 24(1), (2020), 197–204.
  • 31. A. A. Saleem and A. A. Abdallah, On U− recurrent Finsler spaces, Int. Res. J. Innov.
    Engineering. Tech. 5(1), (2022), 58–63.
  • 32. A. A. Saleem and A. A. Abdallah, Study on Uh−birecurrent Finsler space, Int. J. Adv.
    Res. Sci. Commun. Tech. 2(3), (2022), 28–39.
  • 33. Y. B. Shen and Z. Shen, Introduction to modern Finsler geometry, World Scientific
    Publishing Company, (2016).
  • 34. L. Tamassy, Relation between metric spaces and Finsler spaces, Differ. Geom. Appl.
    26(5), (2008), 483–94.
  • 35. D. Y. Won, On the history of 60 years of Japanese school of Finsler geometry, J. History.
    Math. 34(3), (2021), 89–111.
  • 36. A. Zafar and A. Musavvir, On some properties of W−curvature tensor, Palestine. J.
    Math. 3(1), (2014), 61–69.
  • 37. M. L. Zlatanovic and S. M. Mincic, Identities for curvature tensors in generalized Finsler
    space, Filomat, 23(2009), 34–42.