Invariant Infinite series metrics on reduced Σ-spaces

Document Type : Original Article

Authors

1 Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran.

2 Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, Iran .

Abstract

In this paper we study the geometric properties of Finsler Σ-spaces . we prove that Infinite series Σ-spaces are Riemannian.

Keywords


  • 1. H. An and S. Deng, Invariant (α, β)− metric on homogeneous manifolds, Monatsh.
    Math. 154(2008), 89-102.
  • 2. P. Bahmandoust and D. Latifi, on Finsler s-manifolds, Eur .J. Pure and App .Math.
    10(5) (2017), 1099-1111.
  • 3. P. Bahmandoust and D.Latif, Naturally reductive homogeneous (α, β)− spaces, Int.J.
    Geom. Method Modern Phys. 17(2020), 2050117.
  • 4. X. Chen, X. Mo and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature,
    J. London Math. Soc. 68(2003), 762-780.
  • 5. S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts
    in Mathematics, 2005.
  • 6. S. Deng and Z. Hou, On symmetric Finsler spaces , Israel J. Math. , 162(2007), 197-219.
  • 7. Z. Didekhani, B. Najafi, B. Bidabad, Homogeneous Finsler spaces with special nonRiemannian curvature, Global J. Adv. Re. Class. Mod. Geom, 7 (2018) 37-43.
  • 8. P. Habibi and A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata,149(2010), 121-127.
    Invariant Infinite Series Metrics on Reduced Σ − Spaces 57.
  • 9. O. Kowalski, Generalized symmetric spaces,Lecture Notes in Mathematics, Springer Verlag, 1980.
  • 10. D. Latifi and A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57(2006),
    357-366. Erratum: Rep. Math. Phys. 60(2007), 347 .
  • 11. D. Latifi and M. Toomanian, On Finsler Σ−spaces, J. Cont. Math. Ana 50(2015), 107-
    115.
  • 12. D. Latifi and M. Toomanian, Invariant naturally reductive Randers metrics on homogeneous spaces, Math.Sci. 63(2012), https://doi.org/10.1186/2251-7456-6-63.
  • 13. D. Latifi and M. Toomanian, On the existence of bi-invariant Finsler metrics on Lie
    groups, Math .Sci. 37(2013).https://doi.org/10.1186/2251-7456-7-37.
  • 14. D. Latifi, On generalized symmetric square metrics, Acta Univ Apulensis, 68(2021),
    63-70.
  • 15. A. J. Ledger and M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry. 2(1968), 451-459.
  • 16. A. J. Ledger, Espaces de Riemann symetriques generalises, C. R. Acad. Sc. Paris.
    264(1967), 947-948.
  • 17. A. J. Ledger and A. R. Razavi, Reduced Σ− spaces, Illinois J. Math. 26(1982), 272-292.
  • 18. O. Loos, Symmetric spaces, W. A. Benjamin Inc., New York (1969).
  • 19. O. Loos, An intrinsic characterisation of fibre bundles associated with homogeneous
    spaces defined by Lie group automorphisms, Abn. Math. Sem. Univ. Hamburg. 37(1972),
    160-179.
  • 20. G. Randers, On an asymmetrical metric in the four-space of general relativity, Phys.
    Rev. 59(1941), 195-199.
  • 21. Z. Shen, On some non-Riemannian quantities in Finsler geometry, Canad. Math. Bull.
    56(2013), 184-193.
  • 22. L. Zhang and S. Deng, On generalized symmetric Finsler spaces, Balkan J. Geom. Appl.
    21(2016), 113-123.