1. H. An and S. Deng, Invariant (α, β)− metric on homogeneous manifolds, Monatsh. Math. 154(2008), 89-102.
2. P. Bahmandoust and D. Latifi, on Finsler s-manifolds, Eur .J. Pure and App .Math. 10(5) (2017), 1099-1111.
3. P. Bahmandoust and D.Latif, Naturally reductive homogeneous (α, β)− spaces, Int.J. Geom. Method Modern Phys. 17(2020), 2050117.
4. X. Chen, X. Mo and Z. Shen, On the flag curvature of Finsler metrics of scalar curvature, J. London Math. Soc. 68(2003), 762-780.
5. S. S. Chern and Z. Shen, Riemann-Finsler geometry, World Scientific, Nankai Tracts in Mathematics, 2005.
6. S. Deng and Z. Hou, On symmetric Finsler spaces , Israel J. Math. , 162(2007), 197-219.
7. Z. Didekhani, B. Najafi, B. Bidabad, Homogeneous Finsler spaces with special nonRiemannian curvature, Global J. Adv. Re. Class. Mod. Geom, 7 (2018) 37-43.
8. P. Habibi and A. Razavi, On generalized symmetric Finsler spaces, Geom. Dedicata,149(2010), 121-127. Invariant Infinite Series Metrics on Reduced Σ − Spaces 57.
9. O. Kowalski, Generalized symmetric spaces,Lecture Notes in Mathematics, Springer Verlag, 1980.
10. D. Latifi and A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57(2006), 357-366. Erratum: Rep. Math. Phys. 60(2007), 347 .
11. D. Latifi and M. Toomanian, On Finsler Σ−spaces, J. Cont. Math. Ana 50(2015), 107- 115.
12. D. Latifi and M. Toomanian, Invariant naturally reductive Randers metrics on homogeneous spaces, Math.Sci. 63(2012), https://doi.org/10.1186/2251-7456-6-63.
13. D. Latifi and M. Toomanian, On the existence of bi-invariant Finsler metrics on Lie groups, Math .Sci. 37(2013).https://doi.org/10.1186/2251-7456-7-37.
14. D. Latifi, On generalized symmetric square metrics, Acta Univ Apulensis, 68(2021), 63-70.
15. A. J. Ledger and M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry. 2(1968), 451-459.
16. A. J. Ledger, Espaces de Riemann symetriques generalises, C. R. Acad. Sc. Paris. 264(1967), 947-948.
17. A. J. Ledger and A. R. Razavi, Reduced Σ− spaces, Illinois J. Math. 26(1982), 272-292.
18. O. Loos, Symmetric spaces, W. A. Benjamin Inc., New York (1969).
19. O. Loos, An intrinsic characterisation of fibre bundles associated with homogeneous spaces defined by Lie group automorphisms, Abn. Math. Sem. Univ. Hamburg. 37(1972), 160-179.
20. G. Randers, On an asymmetrical metric in the four-space of general relativity, Phys. Rev. 59(1941), 195-199.
21. Z. Shen, On some non-Riemannian quantities in Finsler geometry, Canad. Math. Bull. 56(2013), 184-193.
22. L. Zhang and S. Deng, On generalized symmetric Finsler spaces, Balkan J. Geom. Appl. 21(2016), 113-123.
Zolfegharzadeh, S., & Toomanian, M. (2023). Invariant Infinite series metrics on reduced Σ-spaces. Journal of Finsler Geometry and its Applications, 4(2), 51-57. doi: 10.22098/jfga.2023.13805.1104
MLA
Simin Zolfegharzadeh; Megerdich Toomanian. "Invariant Infinite series metrics on reduced Σ-spaces", Journal of Finsler Geometry and its Applications, 4, 2, 2023, 51-57. doi: 10.22098/jfga.2023.13805.1104
HARVARD
Zolfegharzadeh, S., Toomanian, M. (2023). 'Invariant Infinite series metrics on reduced Σ-spaces', Journal of Finsler Geometry and its Applications, 4(2), pp. 51-57. doi: 10.22098/jfga.2023.13805.1104
VANCOUVER
Zolfegharzadeh, S., Toomanian, M. Invariant Infinite series metrics on reduced Σ-spaces. Journal of Finsler Geometry and its Applications, 2023; 4(2): 51-57. doi: 10.22098/jfga.2023.13805.1104