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Abstract. In this paper, we study the geometric properties of Finsler Σ−spaces.

We prove that Infinite series Σ−spaces are Riemannian.
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1. Introduction

Let M be a C∞ manifold and µ : M × M −→ M , µ(x, y) = x.y be a

differentiable multiplication. The space M with the multiplication µ is said to

be symmetric if the following conditions hold:

(1) x.x = x

(2) x.(x.y) = y

(3) x.(y.z) = (x.y)(x.z)

(4) Every point x has a neighborhood U such that x.y = y

implies y = x, for all y ∈ U .

The notion of symmetric spaces is due to E. Cartan and reformulated by O.

Loos as pair (M,µ) with conditions (1) − (4) in [18]. A. J. Ledger [15, 16]

initiated the study later, generalized symmetric spaces or regular s−spaces.

Let M be a C∞−manifold with a family of maps {sx}x∈M . The space M is

said to be a regular s−space if the following conditions hold:
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(a) sxx = x,

(b) sx is a diffeomorphism,

(c) sx ◦ sy = ssxy ◦ sx,
(d) (sx)∗ has only one fixed vector, the zero vector.

Σ−spaces and reduced Σ−spaces where first introduced by O. Loos [18] as

generalisation of reflection spaces and symmetric spaces [19]. They include

also the class of regular s−manifolds [9].

The definition of symmetric Finsler space is a natural generalization of E.

Cartan’s definition of Riemannian symmetric spaces. We call a Finsler space

(M,F ) as a symmetric Finsler space if for any point p ∈ M there exists an

involutive isometry sp of (M,F ) such that p is an isolated fixed point of sp.

If we drop the involution property in the definition of symmetric Finsler

space keeping the property sx ◦ sy = sz ◦ sx, z = sx(y) we get a bigger class of

Finsler manifolds as symmetric Finsler spaces [6, 8, 10, 22]. Finsler Σ−spaces

were first proposed and studied by the second authors in [11].

2. Preliminaries

A Finsler metric on a C∞ manifold of dimension n, is a function F : TM −→
[0,∞) which has the following properties:

(i) F is C∞ on TM0 = TM {0},
(ii) F is positively 1−homogeneous on the fibers of tangent

bundle TM ,

(iii) For any non-zero y ∈ TxM , the fundamental tensor gy :

TxM × TxM −→ R on TxM is positive definite,

gy(u, v) =
1

2

∂2

∂s∂t
[F 2(y + su+ tv)]|s=t=0, u, v ∈ TxM.

Then (M,F ) is called an n-dimensional Finsler manifold.

One of the main quantities in Finsler geometry is the flag curvature which

is defined as follows:

K(P, y) =
gy(R(u, y)y, u)

gy(y, y)gy(u, u)− g2y(y, u)
,

where P = Span{u, y} is a 2−plane in TxM ,

R(u, y)y = ∇u∇yy −∇y∇uy −∇[u,y]y

and ∇ is the Chern connection induced by F [5, 21].

For a Finsler metric F on n−dimensional manifold M , the Busemann-

Hausdorff volume form dVF = σF (x)dx
1...dxn is defined by

σF (x) =
V ol(Bn(1))

V ol{(yi) ∈ Rn|F (yi ∂
∂xi |x) < 1}

.
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Let

Gi :=
1

4
gil[

∂2(F 2)

∂xk∂yl
yk − ∂(F 2)

∂xl
],

denote the geodesic coefficients of F in the same local coordinate system. The

S−curvature can be defined by

S(y) =
∂Gi

∂yi
(x, y)− yi

∂

∂xi
[lnσF (x)],

where y = yi ∂
∂xi |x ∈ TxM (see [5]). The Finsler metric F is said to be of

isotropic S−curvature if

S = (n+ 1)cF,

where c = c(x) is a scalar function on M .

Let (M,F ) be an n−dimensional Finsler manifold. The non-Riemannian

quantity Ξ−curvature Ξ = Ξidx
i on the tangent bundle TM , is defined by

Ξi = S.i|mym − S|i,

where S denotes the S−curvature, “.” and “|” denote the vertical and horizontal

covariant derivatives, respectively. We say that a Finsler metric have almost

vanishing Ξ−curvature if

Ξi = −(n+ 1)F 2(
θ

F
)yi ,

where θ = θi(x)y
i is a 1-form on M [21, 7].

3. (α, β)− Σ− spaces

We first recall the definition and some basic results concerning Σ−spaces

[17].

Definition 3.1. Let M be a smooth connected manifold, Σ a Lie group, and

µ : M ×Σ×M −→ M a smooth map. Then the triple (M,Σ, µ) is a Σ−space

if it satisfies

(Σ1): µ(x, σ, x) = x,

(Σ2): µ(x, e, y) = y,

(Σ3): µ(x, σ, µ(x, τ, y)) = µ(x, στ, y)

(Σ5): µ(x, σ, µ(y, τ, z)) = µ(µ(x, σ, y), στσ−1, µ(x, σ, z))

where x, y, z ∈ M , σ, τ ∈ Σ and e is the identity element of Σ. The triple

(M,Σ, µ) is usually dinoted by M.

For a fixed point x ∈ M we define a map σx : M −→ M by σx(y) = µ(x, σ, y)

and a map σx : M −→ M by σx(y) = σy(x). with respect to these maps the

above conditions become

(Σ
′

1): σx(x) = x,

(Σ
′

2): ex = idM ,
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(Σ
′

3): σxτx = (στ)x
(Σ

′

4): σxτyσ
−1
x = (στσ−1)σx(y).

For each x ∈ M by Σx we denote the image of Σ under the map Σ −→ Σx,

σ −→ σx. For each σ ∈ Σ we define (1,1) tensor field Sσ on the Σ−space M

by

SσXx = (σx)∗Xx ∀x ∈ M,Xx ∈ TxM.

Clearly Sσ is smooth.

Definition 3.2. A Σ−space M is a reduced Σ−space if for each x ∈ M ,

(1) TxM is generated by the set of all σx(Xx), that is

TxM = gen{(I − Sσ)Xx|Xx ∈ TxM,σ ∈ Σ},

(2) If Xx ∈ TxM and σxXx = 0 for all σ ∈ Σ then Xx = 0, and thus no

non-zero vector in TxM is fixed by all Sσ.

Definition 3.3. A Finsler Σ−space, denoted by (M,Σ, F ) is a reduced Σ−space

together with a Finsler metric F which is invariant under Σp for p ∈ M .

Definition 3.4. let α =
√

ãij(x)yiyj be a norm induced by a Riemannian

metric ã and β(x, y) = bi(x)y
i be a 1-form on an n-dimensional manifold M ,

and let

∥β(x)∥α :=
√

ãijbi(x)bj(x). (3.1)

Now , the function F is defined by ,

F := αϕ(s) s =
β

α
, (3.2)

where ϕ = ϕ(s) is a positive c∞ function on (−b0, b0) satisfying

ϕ(s)− sϕ′(s) + (b2 − s2)ϕ′′(s) > 0, |s| ≤ b < b0. (3.3)

Then by lemma 1.1.2 of [3],F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈ M

. A Finsler metric in the form (3.2) is called an (α, β)− metric [1,3]. A Finsler

space having the Finsler function ,

F (x, y) =
β2(x, y)

β(x, y)− α(x, y)
, (3.4)

is called a Finsler space with an infinite series(α, β) - metric.

now we present the main results

Lemma 3.5. Let (M,Σ, F ) be an infinite series Σ− space with F =
β2

β − α
defined by the Riemannian metric ã and the vector field X. Then (M,Σ, ã) is

a Riemannian Σ−space.

Proof. Let σx be a diffeomorphism σx : M −→ M defined by σx(y) = µ(x, σ, y).

Then for p ∈ M and for any y ∈ TpM we have
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F (p, Y ) = F (σx(p), dσx(Y )),

Applying equation (3.4) we get

ã(Xp, y)
2

ã(Xp, y)−
√

ã(y, y)
=

ã(Xσx(p), dσx(y))
2

ã(Xσx(p), dσx(y))−
√

ã(dσx(y), dσx(y))
,

which implies

ã(Xp, y)
2ã(Xσx(p), dσx(y))− ã(Xp, y)

2
√

ã(dσx(y), dσx(y))

= ã(Xσx(p), dσx(y))
2ã(Xp, y)− ã(Xσx(p), dσx(y))

2
√
ã(y, y). (3.5)

Applying the above equation to −Y , we get

ã(Xp, y)
2ã(Xσx(p), dσx(y)) + ã(Xp, y)

2
√
ã(dσx(y), dσx(y))

= ã(Xσx(p), dσx(y))
2ã(Xp, y) + ã(Xσx(p), dσx(y))

2
√
ã(y, y), (3.6)

Applying equations (3.5)a nd (3.6), we get

ã(Xp, y) = ã(Xσx(p), dσx(y)) (3.7)

Subtracting equation (3.5) from equation (3.6) and using equation (3.7), we

get

ã(y, y) = ã(dσx(y), dσx(y))

Thus σx is an isometry with respect to the Riemannian metric ã. □

Lemma 3.6. Let (M,Σ, ã) be a Riemannian Σ−space. Let F be an infinite se-

ries defined by the Riemannian metric ã and the vector field X. Then (M,Σ, F )

is an infinite series Σ−space if and only if X is σx−invariant for all x ∈ M .

Proof. Let X be σx−invariant. Then for any p ∈ M , we have Xσx(p) = dσxXp.

Then for any y ∈ TpM we have

F (σx(p), dσxyp) =
ã(Xσx(p), dσxyp)

2

ã(Xσx(p), dσxyp)−
√

ã(dσxyp, dσxyp)

=
ã(dσxXp, dσxyp)

2

ã(dσxXp, dσxyp)−
√
ã(dσxyp, dσxyp)

=
ã(Xp, yp)

2

ã(Xp, yp)−
√
ã(yp, yp)

= F (p, yp).

Conversely, let F be a ΣM − invariant. Then for any p ∈ M and y ∈ TpM ,

we have

F (p, Y ) = F (σx(p), dσx(Y ))
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Applying the lemma (3.5) we have

ã(Xp, y) = ã(Xσx(p), dσx(y))

which implies

ã(y, y) = ã(dσx(y), dσx(y)) (3.8)

Combining the equation (3.7) and (3.8) , we get

ã(Xx, y) = ã(Xσx(p), dσx(y)) (3.9)

Therefore dσxXp = Xσx(p). □

Theorem 3.7. An infinite series Σ−space must be Riemannian

Proof. Let (M,Σ, F ) be an infinet series Σ−space with F =
β2

β − α
defined

by the Riemannian metric ã and the vector field X. Let σx be a diffeomor-

phism defined by σx(y) = µ(x, σ, y). by lemma (3.5) (M,Σ, ã) is a Riemannian

Σ−space. Thus we have

F (x, dσxy) =
ã(Xx, dσx(y))

2

ã(Xx, dσx(y))−
√
ã(dσx(y), dσx(y))

=
ã(Xx, dσx(y))

2

ã(Xx, dσx(y))−
√
ã(y, y)

= F (x, y).

Therefore ã(Xx, dσxy) = ã(Xx, y), ∀y ∈ TxM . The tangent map Sσ = (dσx)x
is an orthogonal transformation of TxM without any nonzero fixed vectors. So

we have ã(Xx, (S
σ − id)x(y)) = 0 , ∀y ∈ TxM . Since (S − id)x is an invertible

linear transformation, we have Xx = 0, ∀x ∈ M . Hence F is Riemannian. □
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