On a class of conformally flat (α,β)-metrics with special curvature properties

Document Type : Original Article

Author

Department of Mathematical Science and Statistics, Malayer University, Malayer, Iran

Abstract

This paper is devoted to study of a class of conformally flat (α,β)-metrics that have of the form F = αexp(2s)/s; where s := β/α. They are called Kropina change of exponential (α,β)-metrics. We prove that if F has relatively isotropic mean Landsberg curvature or almost vanishing Xi-curvature then it is a Riemannian metric or a locally Minkowski metric. Also, we prove that, if F be a weak Einstein metric, then it is either a Riemannian metric or a locally Minkowski metric.

Keywords


  • 1. P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The theory of sprays and Finsler
    spaces with applications in physics and biology. FTPH 58, Kluwer Academic Publishers,
    1993.
  • 2. M. Amini, On conformally flat cubic (α, β)-metrics, Journal of Finsler Geometry and its
    Applications, 2(1) (2021), 75-85.
  • 3. G.S. Asanov, Finslerian metric functions over product R × M and their potential applications, Rep. Math. Phys. 41(1998), 117-132.
  • 4. G. Chen and X. Cheng, An important class of conformally flat weak Einstein Finsler
    metrics, Int. J. Math. 24(1) (2013), 1350003 (15 pages).
  • 5. G. Chen, Q. He and Z. Shen, On conformally flat (α, β)-metrics with constant flag
    curvature, Publ. Math. Debrecen, 86 (2015), 351-363.
  • 6. X. Cheng, H. Li and Y. Zou, On conformally flat (α, β)-metrics with relatively isotropic
    mean Landsberg curvature, Publ. Math. Debrecen, 85 (2014) 131-144.
  • 7. X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg
    curvature, Publ. Math. Debrecen, 72 (2008), 475-485.
  • 8. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientiflc, Singapore, 2005.
  • 9. M. Hashiguchi, S. H¯oj¯o, and M. Matsumoto, Landsberg spaces of dimension two with
    (α, β)-metric, Tensor, N. S. 57 (1996), 145-153.
  • 10. Y. Ichijyo and M. Hashuiguchi On the condition that a Randers space be conformally
    flat, Rep. Fac. Sci. Kagoshima Univ. 22 (1989), 7-14.
  • 11. L. Kang, On conformally flat Randers metrics, Sci. Sin. Math. 41 (2011), 439-446 (in
    Chinese).
  • 12. M. S. Knebelman, Conformal geometry of generalised metric spaces, Proc. Natl. Acad.
    Sci. USA 15 (1929), 376-379.
  • 13. V.K. Kropina, On projective two-dimensional Finsler spaces with a special metric, Trudy
    Sem. Vektor Tenzor Anal. 11 (1961), 277-292.(in Russian).
  • 14. B. Li and Z. Shen, On a class of weak Landsberg metrics, Science in China Series A, 50
    (2007), 75-85.
  • 15. M. Matsumoto, Projective flat Finsler spaces with (α, β)-metric. Rep Math Phys 30
    (1991), 15-20.
  • 16. L-I. Piscoran and M. Amini, On conformally flat square-root (α, β)-metrics, Journal of
    Finsler Geometry and its Applications, 2(2) (2021), 89-102.
  • 17. H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959.
  • 18. Z. Shen On projectively flat (α, β)-metrics. Canad Math Bull 52 (2009), 132-144.
  • 19. A. Tayebi and M. Amini, Conformally flat 4-th root (α, β)-metrics with relatively
    isotropic mean Landsberg curvature, Math. Analysis. Convex. Optimization, 1(2) (2020),
    25-34.
  • 20. A. Tayebi, M. Amini, On Conformally Flat Exponential (α, β)-Metrics, Proc. Natl. Acad.
    Sci., India, Sect. A Phys. Sci. 92 (2022), 353-365.
  • 21. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, C. R.
    Acad. Sci. Paris, Ser. I. 349 (2011), 691-693.
  • 22. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differential
    Geom. Appl. 62 (2019) 253-266.
  • 23. A. Tayebi and T. Tabatabeifar Unicorn metrics with almost vanishing H- and Ncurvatures. Turkish J Math 41 (2017), 998-1008.
  • 24. Q. Xia, On locally dually flat (α, β)-metrics, Differential Geom. Appl. 29 (2011), 233-243.
  • 25. Y. Yu, and Y. You, Projectively flat exponential Finsler metric. J Zhejiang Univ Sci A
    7 (2006), 1068-1076.
  • 26. M.G. Yuan , X. Cheng On conformally flat (α, β)-metrics with special curvature properties, Acta Math. Sinica English Ser. 31 (2015), 879-892.