This paper is devoted to study of a class of conformally flat (α,β)-metrics that have of the form F = αexp(2s)/s; where s := β/α. They are called Kropina change of exponential (α,β)-metrics. We prove that if F has relatively isotropic mean Landsberg curvature or almost vanishing Xi-curvature then it is a Riemannian metric or a locally Minkowski metric. Also, we prove that, if F be a weak Einstein metric, then it is either a Riemannian metric or a locally Minkowski metric.
1. P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The theory of sprays and Finsler spaces with applications in physics and biology. FTPH 58, Kluwer Academic Publishers, 1993.
2. M. Amini, On conformally flat cubic (α, β)-metrics, Journal of Finsler Geometry and its Applications, 2(1) (2021), 75-85.
3. G.S. Asanov, Finslerian metric functions over product R × M and their potential applications, Rep. Math. Phys. 41(1998), 117-132.
4. G. Chen and X. Cheng, An important class of conformally flat weak Einstein Finsler metrics, Int. J. Math. 24(1) (2013), 1350003 (15 pages).
5. G. Chen, Q. He and Z. Shen, On conformally flat (α, β)-metrics with constant flag curvature, Publ. Math. Debrecen, 86 (2015), 351-363.
6. X. Cheng, H. Li and Y. Zou, On conformally flat (α, β)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen, 85 (2014) 131-144.
7. X. Cheng, H. Wang and M. Wang, (α, β)-metrics with relatively isotropic mean Landsberg curvature, Publ. Math. Debrecen, 72 (2008), 475-485.
8. S. S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientiflc, Singapore, 2005.
9. M. Hashiguchi, S. H¯oj¯o, and M. Matsumoto, Landsberg spaces of dimension two with (α, β)-metric, Tensor, N. S. 57 (1996), 145-153.
10. Y. Ichijyo and M. Hashuiguchi On the condition that a Randers space be conformally flat, Rep. Fac. Sci. Kagoshima Univ. 22 (1989), 7-14.
11. L. Kang, On conformally flat Randers metrics, Sci. Sin. Math. 41 (2011), 439-446 (in Chinese).
12. M. S. Knebelman, Conformal geometry of generalised metric spaces, Proc. Natl. Acad. Sci. USA 15 (1929), 376-379.
13. V.K. Kropina, On projective two-dimensional Finsler spaces with a special metric, Trudy Sem. Vektor Tenzor Anal. 11 (1961), 277-292.(in Russian).
14. B. Li and Z. Shen, On a class of weak Landsberg metrics, Science in China Series A, 50 (2007), 75-85.
15. M. Matsumoto, Projective flat Finsler spaces with (α, β)-metric. Rep Math Phys 30 (1991), 15-20.
16. L-I. Piscoran and M. Amini, On conformally flat square-root (α, β)-metrics, Journal of Finsler Geometry and its Applications, 2(2) (2021), 89-102.
17. H. Rund, The Differential Geometry of Finsler Spaces, Springer-Verlag, Berlin, 1959.
18. Z. Shen On projectively flat (α, β)-metrics. Canad Math Bull 52 (2009), 132-144.
19. A. Tayebi and M. Amini, Conformally flat 4-th root (α, β)-metrics with relatively isotropic mean Landsberg curvature, Math. Analysis. Convex. Optimization, 1(2) (2020), 25-34.
20. A. Tayebi, M. Amini, On Conformally Flat Exponential (α, β)-Metrics, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 92 (2022), 353-365.
21. A. Tayebi and B. Najafi, On m-th root metrics with special curvature properties, C. R. Acad. Sci. Paris, Ser. I. 349 (2011), 691-693.
22. A. Tayebi and M. Razgordani, On conformally flat fourth root (α, β)-metrics, Differential Geom. Appl. 62 (2019) 253-266.
23. A. Tayebi and T. Tabatabeifar Unicorn metrics with almost vanishing H- and Ncurvatures. Turkish J Math 41 (2017), 998-1008.
Zohrehvand, M. (2023). On a class of conformally flat (α,β)-metrics with special curvature properties. Journal of Finsler Geometry and its Applications, 4(2), 1-21. doi: 10.22098/jfga.2023.13701.1099
MLA
Mosayeb Zohrehvand. "On a class of conformally flat (α,β)-metrics with special curvature properties", Journal of Finsler Geometry and its Applications, 4, 2, 2023, 1-21. doi: 10.22098/jfga.2023.13701.1099
HARVARD
Zohrehvand, M. (2023). 'On a class of conformally flat (α,β)-metrics with special curvature properties', Journal of Finsler Geometry and its Applications, 4(2), pp. 1-21. doi: 10.22098/jfga.2023.13701.1099
VANCOUVER
Zohrehvand, M. On a class of conformally flat (α,β)-metrics with special curvature properties. Journal of Finsler Geometry and its Applications, 2023; 4(2): 1-21. doi: 10.22098/jfga.2023.13701.1099