Flag curvature of invariant 3-power metrics on homogeneous spaces

Document Type : Original Article

Author

Department of Mathematics, University of Mohaghegh Ardabili, p.o.box. 5619911367, Ardabil-Iran.

Abstract

In this paper, we consider invariant 3-power metric F=(α + β)32 such that induced by invariant Riemannian metrics a and invariant vector fields X on homogeneous spaces. We give an explicit formula for the flag curvature of invariant 3-power metrics.

Keywords


  • 1. P. Bahmandoust and D. Latifi, Naturally reductive homogeneous (α, β)- spaces,Int. J.
    Geom. Methods Mod. Phys. 17 (8), (2020), 2050117.
  • 2. D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry, SpringerVerlag, NEWYORK,(2000).
  • 3. M. Ebrahimi and D. Latifi, On flag curvature and homogeneous geodesics of left invariant
    Randers metrics on the semi-direct product a ⊕p r, Journal of Lie Theory, 29, (2019),
    619-627.
  • 4. D. Latifi, Homogeneous geodesics in homogeneous Finsler spaces, J. Geom. Phys. 57,
    (2007), 14211433.
  • 5. D. Latifi, A. Razavi, On homogeneous Finsler spaces, Rep. Math. Phys, 57, (2006) 357-
    366. Erratum: Rep. Math. Phys. 60, (2007), 347.
  • 6. D. Latifi, Bi-invariant Randers metrics on Lie groups, Publ. Math. Debrecen., 76 1-2,
    (2010), 219226.
  • 7. D. Latifi and M. Toomanian, Invariant naturally reductive Randers metrics on homogeneous spaces, Math Sci., 6 63, (2012).
  • 8. D. Latifi, Bi-invariant (α, β)- metrics on Lie groups, Acta Universitatis Apulensis 65,
    (2021), 121-131.
  • 9. D. Latifi, On generalized symmetric square metrics, Acta Universitatis Apulensis, 68,
    (2021), 63-70.
  • 10. M. Matsumoto, Theory of Finsler spaces with (α, β)-metric, Rep. Math. Phys. 31, (1992),
    43-83.
  • 11. M. Parhizkar and D. Latifi, On the flag curvature of invariant (α, β)- metrics, Int.
    J.Geom. Methods Mod. Phys., 13, (2016), 1650039, 1-11.
  • 12. M. Parhizkar and D. Latifi, On invariant Matsumoto metrics, Vietnam J. Math., 47,
    (2019), 355365.
  • 13. T. P¨uttmann, Optimal pinching constants of odd dimensional homogeneous spaces, Invent. Math., 138, (1999), 631684.
  • 14. M. L. Zeinali, On generalized symmetric Finsler spaces with some special (α, β) -metrics,
    Journal of Finsler Geometry and its Applications, 1, No. 1, (2020), 45-53.
  • 15. M. L. Zeinali, Some results in generalized symmetric square-root spaces, Journal of
    Finsler Geometry and its Applications, 3, No. 2, (2022), 13-19