We establish a local gradient estimate for positive Finsler p-eigenfu-nctions on a complete non-compact Finsler measure space M with its weighted Ricci curvature Ric∞ bounded from below by a non-positive constant. As an application, we obtain the corresponding Harnack inequality.
1. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer, GTM 200, 2000.
2. S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Commun. Pure. Appl. Math., 28(1975), 333-354.
3. X. Cheng and Y. Feng, Some inequalities and gradient estimates for harmonic functions on Finsler manifolds, preprint, 2023.
4. X. Cheng and Z. Shen, Some inequalities on Finsler manifolds with weighted Ricci curvature bounded below, Results Math., 77(2022), Article number: 70.
5. S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differ. Equ., 36(2009), 211-249.
6. S. Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry, Math. Ann., 343(2009), 669-699.
7. S. Ohta, Comparison Finsler Geometry, Springer Monographs in Mathematics, Springer, Cham, 2021.
8. S. Ohta and K.-T. Sturm, Bochner-Weitzenbo¨ck formula and Li-Yau estimates on Finsler manifolds, Adv. Math., 252(2014), 429-448.
9. H. B. Rademacher, A sphere theorem for non-reversible Finsler metrics, In ”A Sampler of Finsler Geometry” MSRI series, Cambridge University Press, 2004.
10. Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 200
11. B. Wu and Y. Xin, Comparison theorems in Finsler geometry and their applications, Math. Ann., 337(2007), 177-196.
12. C. Xia, Local gradient estimate for harmonic functions on Finsler manifolds, Calc. Var. Partial Differ. Equ., 51(2014), 849-865.
13. Q. Xia, Local and global gradient estimates for Finsler p-harmonic functions, Comm. Anal. Geom., 30(2)(2022), 451-500.
14. Q. Xia, Sharp spectral gap for Finsler p-Laplacian, Sci. China Math., 62(2019), 1615- 1944.
15. S. T. Yau, Harmonic functions on complete Riemannian manifolds, Commun. Pure. Appl. Math., 28(1975), 201-228.
16. F. Zhang and Q. Xia, Some Liouville-type theorems for harmonic functions on Finsler manifolds, J. Math. Anal. Appl. 417(2014), 979-995.
Cheng, X. , Chen, Z. and Feng, Y. (2023). Local gradient estimate for Finsler p-eigenfunctions on Finsler manifolds with Ric∞≥ -K. Journal of Finsler Geometry and its Applications, 4(1), 55-68. doi: 10.22098/jfga.2023.13069.1091
MLA
Cheng, X. , , Chen, Z. , and Feng, Y. . "Local gradient estimate for Finsler p-eigenfunctions on Finsler manifolds with Ric∞≥ -K", Journal of Finsler Geometry and its Applications, 4, 1, 2023, 55-68. doi: 10.22098/jfga.2023.13069.1091
HARVARD
Cheng, X., Chen, Z., Feng, Y. (2023). 'Local gradient estimate for Finsler p-eigenfunctions on Finsler manifolds with Ric∞≥ -K', Journal of Finsler Geometry and its Applications, 4(1), pp. 55-68. doi: 10.22098/jfga.2023.13069.1091
CHICAGO
X. Cheng , Z. Chen and Y. Feng, "Local gradient estimate for Finsler p-eigenfunctions on Finsler manifolds with Ric∞≥ -K," Journal of Finsler Geometry and its Applications, 4 1 (2023): 55-68, doi: 10.22098/jfga.2023.13069.1091
VANCOUVER
Cheng, X., Chen, Z., Feng, Y. Local gradient estimate for Finsler p-eigenfunctions on Finsler manifolds with Ric∞≥ -K. Journal of Finsler Geometry and its Applications, 2023; 4(1): 55-68. doi: 10.22098/jfga.2023.13069.1091