Local gradient estimate for Finsler p-eigenfunctions on Finsler manifolds with Ric∞≥ -K

Document Type : Original Article

Authors

1 School of Mathematical Sciences Chongqing Normal University Chongqing, China

2 School of Mathematical Sciences Chongqing Normal University,Chongqing,China

Abstract

We establish a local gradient estimate for positive Finsler p-eigenfu-nctions on a complete non-compact Finsler measure space M with its weighted Ricci curvature Ric∞ bounded from below by a non-positive constant. As an application, we obtain the corresponding Harnack inequality.
 

Keywords


  • 1. D. Bao, S. S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry,
    Springer, GTM 200, 2000.
  • 2. S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their
    geometric applications, Commun. Pure. Appl. Math., 28(1975), 333-354.
  • 3. X. Cheng and Y. Feng, Some inequalities and gradient estimates for harmonic functions
    on Finsler manifolds, preprint, 2023.
  • 4. X. Cheng and Z. Shen, Some inequalities on Finsler manifolds with weighted Ricci curvature bounded below, Results Math., 77(2022), Article number: 70.
  • 5. S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differ. Equ., 36(2009),
    211-249.
  • 6. S. Ohta, Uniform convexity and smoothness, and their applications in Finsler geometry,
    Math. Ann., 343(2009), 669-699.
  • 7. S. Ohta, Comparison Finsler Geometry, Springer Monographs in Mathematics, Springer,
    Cham, 2021.
  • 8. S. Ohta and K.-T. Sturm, Bochner-Weitzenbo¨ck formula and Li-Yau estimates on
    Finsler manifolds, Adv. Math., 252(2014), 429-448.
  • 9. H. B. Rademacher, A sphere theorem for non-reversible Finsler metrics, In ”A Sampler
    of Finsler Geometry” MSRI series, Cambridge University Press, 2004.
  • 10. Z. Shen, Lectures on Finsler Geometry, World Scientific, Singapore, 200
  • 11. B. Wu and Y. Xin, Comparison theorems in Finsler geometry and their applications,
    Math. Ann., 337(2007), 177-196.
  • 12. C. Xia, Local gradient estimate for harmonic functions on Finsler manifolds, Calc. Var.
    Partial Differ. Equ., 51(2014), 849-865.
  • 13. Q. Xia, Local and global gradient estimates for Finsler p-harmonic functions, Comm.
    Anal. Geom., 30(2)(2022), 451-500.
  • 14. Q. Xia, Sharp spectral gap for Finsler p-Laplacian, Sci. China Math., 62(2019), 1615-
    1944.
  • 15. S. T. Yau, Harmonic functions on complete Riemannian manifolds, Commun. Pure.
    Appl. Math., 28(1975), 201-228.
  • 16. F. Zhang and Q. Xia, Some Liouville-type theorems for harmonic functions on Finsler
    manifolds, J. Math. Anal. Appl. 417(2014), 979-995.