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Abstract. We establish a local gradient estimate for positive Finsler p-eigenfu-

nctions on a complete non-compact Finsler measure spaceM with its weighted

Ricci curvature Ric∞ bounded from below by a non-positive constant. As an

application, we obtain the corresponding Harnack inequality.
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1. Introduction

In Riemannian geometry, the study of harmonic functions is one of the center

topics in geometric analysis. It is well known that Yau’s gradient estimate

and Cheng-Yau’s local gradient estimate for positive harmonic functions under

the condition that Ricci curvature has a lower bound are important results in

Riemannian geometry ( [2], [15]), which have had profound influences on the
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follow-up research about gradient estimate for harmonic functions and have

been generalized in different setting by many mathematicians.

In Finsler geometry, by using the Bochner-Weitzenböck inequality given by

Ohta-Sturm ( [8]), C Xia generalized Cheng-Yau’s result to Finsler manifolds

and proved the local gradient estimate for positive harmonic functions on for-

ward complete non-compact Finsler measure spaces under the condition that

RicN ≥ −K for some real numbers N ∈ [n,+∞) and K ≥ 0 ( [12]). Fur-

ther, Q. Xia proved local and global gradient estimates for positive Finsler p-

eigenfunctions on forward complete non-compact Finsler measure spaces with

the weighted Ricci curvature RicN bounded from below by a non-positive con-

stant ( [13]). As the applications, C. Xia and Q. Xia obtained some Harnack in-

equalities, Liouville type theorems and an upper bound of the first p-eigenvalue

λ1,p for Finsler p-Laplacian, respectively.

In this paper, we always denote a Finsler manifold (M,F ) equipped with a

smooth measure m by (M,F,m) , which we call a Finsler measure space. A

Finsler measure space is not a metric space in usual sense because Finsler metric

F may be nonreversible, that is, F (x, y) ̸= F (x,−y) may happen. This non-

reversibility cause the asymmetry of the associated distance function. In order

to overcome this defect, Ohta extended the concepts of uniform smoothness

and the uniform convexity in Banach space theory into Finsler geometry and

gave their geometric interpretation ( [6]). The uniform smoothness and uniform

convexity mean that there exist two uniform constants 0 < κ∗ ≤ 1 ≤ κ < ∞
such that for x ∈M , V ∈ TxM \ {0} and W ∈ TxM , we have

κ∗F 2(x,W ) ≤ gV (W,W ) ≤ κF 2(x,W ), (1.1)

where gV is the weighted Riemann metric induced by V .

The weighted Ricci curvature RicN (N ∈ (−∞,∞)\{n}) and Ric∞ in Finsler

geometry were defined via Ricci curvature Ric and S-curvature S by S. Ohta

in [5]. Here, n = dimM . By the definition and compared with Riemannian

case, it is natural to characterize functional and geometric properties on Finsler

measure spaces under the condition about the weighted Ricci curvature Ric∞,

and the condition about Ric∞ is usually weaker than the condition about RicN .

Besides, the role played by RicN and the role played by Ric∞ in geometry and

geometric analysis are usually quite different. Actually, in the studies of many

problems, the results under the condition about Ric∞ can not be obtained from

the corresponding results under the condition about RicN by letting N →∞.

Similar to the argument about uniform smoothness constant S(x) of Theo-
rem 4.2 in [6], we set

δ = sup
(x,y)∈TM\{0}

|S(x, y)|. (1.2)

Our main result is the following theorem.
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Theorem 1.1. Let (M,F,m) be an n(≥ 2)-dimensional forward complete

and noncompact Finsler measure space equipped with a uniformly convex and

uniformly smooth Finsler metric F and a smooth measure m. Assume that

Ric∞ ≥ −K for some K ≥ 0 and δ ≥ 1. Let u be a positive p-eigenfunction

corresponding to the eigenvalue λp, that is,

∆pu = −λp|u|p−2u

in a weak sense in a forward geodesic ball B+
2R(q) ⊂ M for any q ∈ M . Then

there exists a positive constant C = C (n, p, κ, κ∗) depending on n, p, the uni-

form constants κ and κ∗, such that

sup
x∈B+

R(q)

{F (x,∇ log u(x)), F (x,∇(− log u(x)))} ≤ C
1 +

(√
K + δ

)
R

R
.

As a direct consequence of Theorem 1.1, we have the following corollary.

Corollary 1.2. Let (M,F,m) and Ric∞ and δ be as in Theorem 1.1. Assumen

that u be a positive p-harmonic function in geodesic ball B+
2R(q) ⊂ M . Then

there exists some constant C = C (n, p, κ, κ∗), depending on n, p, the uniform

constants κ and κ∗, such that

sup
x∈B+

R(q)

{F (x,∇ log u(x)), F (x,∇(− log u(x)))} ≤ C
1 +

(√
K + δ

)
R

R
.

Following the standard arguments in [12] and by Theorem 1.1, one can obtain

the folowing Harnack inequality.

Corollary 1.3. Let (M,F,m) and Ric∞ and δ be as in Theorem 1.1 and u be

a positive harmonic function in geodesic ball B+
2R(q) ⊂ M . Then there exists

some constant C = C (n, κ, κ∗), depending on n, the uniform constants κ and

κ∗, such that

sup
B+

R(q)

u ≤ eC(1+(
√
K+δ)R) inf

B+
R(q)

u.

In the remaining part of this paper, we will first recall some necessary basis of

Finsler manifolds in Section 2. Then we will give the detailed proof of Theorem

1.1 in Section 3.

2. Preliminaries

In this section,we briefly recall the fundamentals of Finsler geometry and give

some necessary definitions. For more details, we refer to [1], [5], [7] and [10].

Let (M,F ) be a Finsler n-manifold with Finsler metric F : TM → [0,∞).

Denote the elements in TM by (x, y) with y ∈ TxM . Let TM0 := TM\{0}
and π : TM\{0} →M be the natural projective map. The pull-back π∗TM is



58 Xinyue Cheng, Zhifan Chen and Yalu Feng

an n-dimensional vector bundle on TM0. The fundamental tensor gij of F is

defined by:

gij(x, y) :=
1

2

∂2F 2(x, y)

∂yi∂yj
.

For a non-vanishing vector field V , one introduces the weighted Riemannian

metric gV on M given by

gV (y, w) = gij(x, Vx)y
iwj , ∀y, w ∈ TxM.

In particular, gV (V, V ) = F 2(V, V ). The pull-back π∗TM admits a unique

linear connection, which is called the Chern connection. The Chern connection

D is determined by the following equations

DV
XY −DV

Y X = [X,Y ], (2.1)

ZgV (X,Y ) = gV (D
V
ZX,Y ) + gV (X,D

V
Z Y ) + 2CV (D

V
Z V,X, Y ) (2.2)

for V ∈ TM \ {0} and X,Y, Z ∈ TM , where

CV (X,Y, Z) := Cijk(x, V )XiY jZk =
1

4

∂3F 2(x, V )

∂V i∂V j∂V k
XiY jZk

is the Cartan tensor of F and DV
XY is the covariant derivative with respect to

the reference vector V .

Given a non-vanishing vector field V on M , the Riemannian curvature RV

is defined by

RV (X,Y )Z = DV
XD

V
Y Z −DV

Y D
V
XZ −DV

[X,Y ]Z

for any vector fields X, Y , Z on M . Further, given two linearly independent

vectors V,W ∈ TxM\{0}, the flag curvature is defined by

KV (V,W ) =
gV

(
RV (V,W )W,V

)
gV (V, V )gV (W,W )− gV (V,W )2

.

Then the Ricci curvature is defined by

Ric(V ) := F (V )2
n−1∑
i=1

KV (V, ei) , (2.3)

where e1, . . . , en−1,
V

F (V ) form an orthonormal basis of TxM with respect to

gV .

We define the reverse metric
←−
F of F by

←−
F (x, y) := F (x,−y) for all (x, y) ∈

TM . It is easy to see that
←−
F is also a Finsler metric onM . A Finsler metric F

on M is said to be reversible if
←−
F (x, y) = F (x, y) for all y ∈ TM . Otherwise,

we say F is nonreversible. In this case, we define the reversibility Λ of F by

Λ := sup
(x,y)∈TM\{0}

F (x, y)
←−
F (x, y)

.
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Obviously, Λ ∈ [1,∞] and Λ = 1 if and only if F is reversible ( [9]). If F

satisfies the uniform smoothness and uniform convexity (see (1.1)), then Λ is

finite with

1 ≤ Λ ≤ min
{√

κ,
√

1/κ∗
}
.

F is Riemannian if and only if κ = 1 if and only if κ∗ = 1 ( [6] [7]).

For x1, x2 ∈M , the distance from x1 to x2 is defined by

dF (x1, x2) := inf
γ

∫ 1

0

F (γ̇(t))dt,

where the infimum is taken over all C1 curves γ : [0, 1]→M such that γ(0) =

x1 and γ(1) = x2. Note that dF (x1, x2) ̸= dF (x2, x1) unless F is reversible.

A C∞-curve γ : [0, 1] → M is called a geodesic (of constant speed) if F (γ, γ̇)

is constant and it is locally minimizing. The forward and backward geodesic

balls of radius R with center at x are defined by

B+
R(x) := {y ∈M | d(x, y) < R}, B−

R (x) := {y ∈M | d(y, x) < R}.

The exponential map expx : TxM → M is defined by expx(v) = γ(1) for

v ∈ TxM if there is a geodesic γ : [0, 1] → M with γ(0) = x and γ̇(0) = v.

A Finsler manifold (M,F ) is said to be forward geodesically complete if the

exponential map is defined on the entire TM . By Hopf-Rinow theorem ( [1]),

any two points in M can be connected by a minimal forward geodesic and

the forward closed balls B+
R(p) are compact. For a point p ∈ M and a unit

vector v ∈ TpM , let ρ(v) = sup {t > 0 | the geodesic expp(tv) is minimal }. If

ρ(v) <∞, we call expp (ρ(v)v) a cut point of p. All the cut points of p is said

to be the cut locus of p, denoted by Cut(p). The cut locus of p always has null

measure (see [1], [10]).

Given a Finsler structure F on M , there is a natural dual norm F ∗ on the

cotangent bundle T ∗M , which is defined by

F ∗(x, ξ) := sup
F (x,y)≤1

ξ(y) for any ξ ∈ T ∗
xM.

One can show that F ∗ is also a Minkowski norm on T ∗M and

g∗ij(x, ξ) :=
1

2

(
∂2

∂ξi∂ξj
F ∗2

)
(x, ξ)

is positive definite for every (x, ξ) ∈ T ∗M\{0}.
Define a map L : TM → T ∗M by

L(y) :=

{
gy(y, ·), y ̸= 0,

0, y = 0.

One can verify that

F (x, y) = F ∗(x,L(y)) and gij(x, y) = g∗ij(x,L(y)),
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where
(
gij(x, y)

)
= (gij(x, y))

−1
. We call L the Legendre transformation on

Finsler manifold (M,F ) ( [10]). From the uniform smoothness and convexity

(1.1) one easily see that gij is uniform elliptic in the sense that there exists

two constants κ̃ = (κ∗)−1, κ̃∗ = κ−1 such that for x ∈ M, ξ ∈ T ∗
xM\{0} and

η ∈ T ∗
xM , we have

κ̃∗F ∗2(x, η) ≤ g∗ij(x, ξ)ηiηj ≤ κ̃F ∗2(x, η).

Given a smooth function u on M , the differential dux = ∂u
∂xi (x)dx

i is a 1-

form on M . The gradient vector ∇u(x) of u at x ∈M is defined by ∇u(x) :=
L−1(du(x)) ∈ TxM . In a local coordinate system, we can express ∇u as

∇u(x) =

{
g∗ij(x, du) ∂u∂xi

∂
∂xj , x ∈Mu,

0, x ∈M\Mu,

where Mu = {x ∈M | du(x) ̸= 0}( [10]).
The Hessian of u is defined by using Chern connection as

∇2u(X,Y ) = g∇u
(
D∇u
X ∇u, Y

)
.

One can show that ∇2u(X,Y ) is symmetric, see ( [8], [11]).

By a Finsler measure space we mean a triple (M,F,m) constituted with a

smooth, connected n-dimensional manifoldM , a Finsler structure F onM and

a measure m on M . Associated with the measure m on M , we may decompose

the volume form dm of m as dm = eΦdx1dx2 · · · dxn. Then the divergence of a

differentiable vector field V on M is defined by

divm V :=
∂V i

∂xi
+ V i

∂Φ

∂xi
, V = V i

∂

∂xi
.

One can also define divm V in the weak form by following divergence formula∫
M

ϕdivm V dm = −
∫
M

dϕ(V )dm

for all ϕ ∈ C∞
0 (M). Now we define the Finsler Laplacian ∆u by

∆u := divm(∇u).

We remark that the Finsler-Laplacian is better to be viewed in a weak sense

due to the lack of regularity, that is, for u ∈W 1,2(M) and all ϕ ∈ C∞
0 (M),∫

M

ϕ∆udm := −
∫
M

dϕ(∇u)dm. (2.4)

One can also define a weighted Laplacian on M . Given a weakly differen-

tiable function u and a vector field V which does not vanish onMu, the weighted

Laplacian is defined on the weighted Riemannian manifold (M, gV ,m) by

∆V u := div
(
∇V u

)
,
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where

∇V u :=

{
gij(x, V ) ∂u∂xi

∂
∂xj for x ∈Mu\{0},

0 for x /∈Mu.

Similarly, the weighted Laplacian can be viewed in a weak sense. We note that

∇∇uu = ∇u and ∆∇uu = ∆u.

Likewise, the Finsler p-Laplacian is defined by∫
M

φ∆pudm = −
∫
M

F p−2(∇u)dφ(∇u)dm. (2.5)

It follows from the variation of the energy functional. It is easy to check that

∆pu = div[F p−2(∇u)∇u] = F p−2(∇u)[∆u+ (p− 2)Hu]

on Mu, where Hu := ∇2u(∇u,∇u)
F 2(∇u) . We say that u is p-harmonic function on

M if u is weak solution of ∆pu = 0. Obviously, if p = 2, then ∆p is the Finsler

Laplacian ∆, u is a normal harmonic function on M ( [12], [16]).

For any η ∈ C2(M), the linearization of ∆p on Mu is given by

Lu(η) = div
{
F p−2(∇u)

[
∇∇uη + (p− 2)F−2(∇u)du(∇∇uη)∇u

]}
= div

[
F p−2(∇u)hu(∇∇uη)

]
, (2.6)

where hu = id+(p−2) du⊗∇u
F 2(∇u) ( [14]). Obviously, Lu(u) = (p−1)∆pu. If p = 2,

then Lu is reduced to the weighted Laplacian ∆∇u.

For any nonzero function u ∈W 1,p(M)\{0}, we define the energy of u by

E(u) :=
∫
M
[F ∗(x, du)]pdm∫
M
|u|pdm

. (2.7)

Note that E(u) is C1 on W 1,p(M)\{0}. It is easy to check that duE = 0 if and

only if

∆pu = −λp|u|p−2u

in a weak sense, that is,∫
M

dφ
[
F p−2(∇u)∇u

]
dm = λp

∫
M

φ|u|p−2udm, (2.8)

where λp = E(u). In this case, λp is called an eigenvalue of ∆p and u is called

an eigenfunction of ∆p corresponding to λp.

Now, write the volume form dm of m as dm = σ(x)dx1dx2 · · · dxn. Define

τ(x, y) := ln

√
det (gij(x, y))

σ(x)
. (2.9)

We call τ the distortion of F .

It is natural to study the rate of change of the distortion along geodesics.

For a vector y ∈ TxM\{0}, let σ = σ(t) be the geodesic with σ(0) = x and

σ̇(0) = y. Set

S(x, y) :=
d

dt
[τ(σ(t), σ̇(t))]

∣∣∣∣
t=0

,
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where S is called the S-curvature of F ( [10]). It is easy to see that ∆u =

tr∇u∇2u− S(∇u) on Mu ( [4] [11]).

Let Y be a C∞ geodesic field on an open subset U ⊂M and ĝ = gY . Let

dm := e−ψ Volĝ, Volĝ =
√
det (gij (x, Yx))dx

1 · · · dxn.

It is easy to see that ψ is given by

ψ(x) = ln

√
det (gij (x, Yx))

σ(x)
= τ (x, Yx) ,

which is just the distortion along Yx at x ∈M ( [3] [4]).

Definition 2.1. ( [5] [7]) Given a unit vector V ∈ TxM , let η : [−ε, ε] → M

be the geodesic such that η̇(0) = V . Decompose m as m = e−Ψ Volgη̇ along η,

where Volgη̇ is the volume form of gη̇ as a Riemannian metric. Then

RicN (V ) := Ric(V ) + (Ψ ◦ η)′′(0)− (Ψ ◦ η)′(0)2

N − n
, for N ∈ (n,∞);

Ric∞(V ) := Ric(V ) + (Ψ ◦ η)′′(0).

For c ≥ 0 and N ∈ [n,∞], RicN (cV ) := c2 RicN (V ).

Note that the quantity (Ψ ◦ η)′(0) = S(x, V ), which is just the S-curvature

with respect to the measure m and (Ψ ◦ η)′′(0) = Ṡ(x, V ) = S|m(x, V )V m,

where “|” denotes the horizontal covariant derivative with respect to the Chern

connection ( [1], [7]). We say that RicN ≥ K for some K ∈ R if RicN (v) ≥
KF 2(v) for all v ∈ TM .

3. Proof of the main theorem

In this section, we will mainly give the proof of Theorem 1.1.

Let u be a positive p-eigenfunction in the forward geodesic ball B2R :=

B+
2R(q) for any q ∈ M , namely, (2.8) holds on B2R. Then u ∈ C1,α (B2R) ∩

W 2,2
loc (B2R) if p ≥ 2 and u ∈ C1,α (B2R) ∩W 2,p

loc (B2R) if 1 < p ≤ 2. Moreover,

u ∈ L∞ (B2R) and u is smooth on the set Mu ∩B2R.

Denote v = (p − 1) log u, then Mu = Mv and ∇v = p−1
u ∇u. For any

φ ∈W 1,p
0 (B2R) ∩L∞ (B2R), we have φ

up−1 ∈W 1,p
0 (B2R) ∩L∞ (B2R) from the

regularity and boundness of u.

Let f(x) := F 2(x,∇v). Then f ∈ W 1,2
loc (B2R) ∩ Cα (B2R) if p ≥ 2 and

f ∈W 1,p
loc (B2R) ∩Cα (B2R) if 1 < p < 2. Moreover, f is smooth on Mv ∩B2R.

By (2.8) and the above argument, in the weak sense, we have

∆v = −1

2
(p− 2)f−1df(∇v)− f − (p− 1)p−1λpf

− p
2+1.

In order to prove Theorem 1.1, we first give following lemma about the

linearization operator Lv of the Finsler p-Laplacian.
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Lemma 3.1. Given f ∈ W 1,2
loc (B2R) ∩ Cα (B2R). Assume that |S| ≤ δ. Then

we have

Lv(f) ≥ −1

2
f

p
2−2

∥∥∇∇vf
∥∥2
HS(∇v) + 2f

p
2−1 Ric∞(∇v) + 2

n
f

p
2+1 − 2

n
δf

p
2

−p(n− 2) + 4

n
f

p
2−1df(∇v) (3.1)

point-wise on Mv ∩B2R, where
∥∥∇∇vf

∥∥2
HS(∇v) = g∇v

(
∇∇vf,∇∇vf

)
.

Proof. From (2.6) and the Bochner-Weitzenböck formula ( [8])

∆∇v
(
F 2(∇v)

2

)
= d(∆v)(∇v) + Ric∞(∇v) +

∥∥∇2v
∥∥2
HS(∇v) ,

it is easy to see

Lv(f) =
1

2
(p− 2)f

p
2−2

∥∥∇∇vf
∥∥2
HS(∇v) + 2f

p
2−1

∥∥∇2v
∥∥2
HS(∇v)

+2f
p
2−1 Ric∞(∇v)− pf

p
2−1df(∇v). (3.2)

Note that∥∥∇2v
∥∥2
HS(∇v) =

∑
i,j

v2ij ≥
1

n

(
trg∇v

∇2v
)2

=
1

n
[∆v + S(∇v)]2 , (3.3)

where (vij) denotes the Hessian of v with respect to Chern connection. Further,

by (2.8), we can derive the following

∆v = −1

2
(p− 2)f−1df(∇v)− f − (p− 1)p−1λpf

− p
2+1,

by λp ≥ 0 and using the inequality (a+ b)2 ≥ a2 + 2ab, we know that

[∆v + S(∇v)]2 =

[
1

2
(p− 2)f−1df(∇v) + f + (p− 1)p−1λpf

−p/2+1 − S(∇v)
]2

≥
[
f +

1

2
(p− 2)f−1df(∇v)− S(∇v)

]2
≥

[
f2 + 2f

(
1

2
(p− 2)f−1df(∇v)− S(∇v)

)]
=

[
f2 + (p− 2)df(∇v)− 2fS(∇v)

]
≥

[
f2 + (p− 2)df(∇v)− 2fδ

]
. (3.4)

Then plugging (3.3) and (3.4) into (3.2) yields (3.1). □

From now on, we assume that Ric∞ ≥ −K and |S| ≤ δ for some real numbers

K > 0. For any nonnegative smooth function φ with a compact support in
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B2R ∩Mv, from (2.6) and by integrating (3.1) by parts, one obtains∫
B2R∩Mv

dφ
[
f

p
2−1hv

(
∇∇vf

)]
dm ≤ 1

2

∫
B2R∩Mv

φf
p
2−2

∥∥∇∇vf
∥∥2
HS(∇v) dm

+2(K + δ)

∫
B2R∩Mv

φfp/2dm

− 2

n

∫
B2R∩Mv

φf
p
2+1dm

+c1

∫
B2R∩Mv

φf
p
2−1df(∇v)dm, (3.5)

where c1 := (n−2)p+4
n is a positive constant since n ≥ 2.

Choose φ = fβη2 as the test function in (3.5), where β > 1 is to be deter-

mined later. Then we have∫
B2R

βη2f
p
2+β−2df

[
hv

(
∇∇vf

)]
dm+ 2

∫
B2R

ηf
p
2+β−1dη

[
hv

(
∇∇vf

)]
dm

≤ 1

2

∫
B2R

η2f
p
2+β−2

∥∥∇∇vf
∥∥2
HS(∇v) dm+ 2(K + δ)

∫
B2R

η2f
p
2+βdm

− 2

n

∫
B2R

η2f
p
2+β+1dm+ c1

∫
B2R

η2f
p
2+β−1df(∇v)dm. (3.6)

Assume that the Finsler metric F satisfies the uniform convexity and uniform

smoothness. Then, by (1.1), we have

κ̃∗F 2(x,∇f) ≤
∥∥∇∇vf

∥∥2
HS(∇v) = gij(x,∇v)fifj ≤ κ̃F 2(x,∇f). (3.7)

For the first term of the LHS of (3.6), since

hv
(
∇∇vf

)
= ∇∇vf + (p− 2)f−1dv

(
∇∇vf

)
∇v,

we have

df
[
hv

(
∇∇vf

)]
= gij(∇v)fifj + (p− 2)f−1

(
gij(∇v)fivj

)2
≥

{
gij(∇v)fifj if p ≥ 2

(p− 1)gij(∇v)fifj if 1 < p ≤ 2

≥ c2κ̃∗F 2(∇f).

(3.8)

Here, c2 = min{1, p− 1}. By a similar argument and by (3.7), we have

2dη
[
hv

(
∇∇vf

)]
= 2

[
gij(∇v)fiηj + (p− 2)f−1

(
gij(∇v)fivj

) (
gij(∇v)viηj

)]
≥ −

{
2(p− 1)κ̃F (∇f)F (∇η) if p ≥ 2

2(3− p)κ̃F (∇f)F (∇η) if 1 < p ≤ 2

≥ −c3κ̃F (∇f)F (∇η),
(3.9)
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where c3 = max{2(p− 1), 2(3− p)}. By (3.7)-(3.9) and choosing a sufficiently

large β > κ̃/ (c2κ̃
∗) ≥ 1, (3.6) can be rewrite as

1

2
c2κ̃

∗β

∫
B2R

η2f
p
2+β−2F 2(∇f)dm ≤ c3κ̃

∫
B2R

ηf
p
2+β−1F (∇f)F (∇η)dm

+2(K + δ)

∫
B2R

η2f
p
2+βdm

− 2

n

∫
B2R

η2f
p
2+β+1dm

+c1

∫
B2R

η2f
p−1
2 +βF (∇f)dm. (3.10)

Let c4 := 2 (c3κ̃)
2
/c2 and c5 := 2c21/c2. By using the fundamental inequality

2ab ≤ a2 + b2 and letting

a =
1

2

(c2κ̃
∗β)

1
2

√
2

ηf
p
4+

β
2 −1F (∇f), b =

√
2c3κ̃

(c2κ̃∗β)
1
2

f
p
4+

β
2 F (∇η),

the first term of the RHS in (3.10) is less than or equal to

c2κ̃
∗β

8

∫
B2R

η2f
p
2+β−2F 2(∇f)dm+

c4
κ̃∗β

∫
B2R

f
p
2+βF 2(∇η)dm, (3.11)

and the fourth term of the RHS in (3.10) is less than or equal to

c2κ̃
∗β

8

∫
B2R

η2f
p
2+β−2F 2(∇f)dm+

c5
κ̃∗β

∫
B2R

η2f
p
2+β+1dm. (3.12)

Now, we take β ≥ max {κ̃/ (c2κ̃∗) , c5n/κ̃∗} ≥ 1 large enough. Then (3.12) is

less than or equal to

c2κ̃
∗β

8

∫
B2R

η2f
p
2+β−2F 2(∇f)dm+

1

n

∫
B2R

η2f
p
2+β+1dm. (3.13)

It follows from (3.10)-(3.13) that

c2κ̃
∗β

∫
B2R

η2f
p
2+β−2F 2(∇f)dm ≤ 4c4

κ̃∗β

∫
B2R

f
p
2+βF 2(∇η)dm

+8(K + δ)

∫
B2R

η2f
p
2+βdm

− 4

n

∫
B2R

η2f
p
2+β+1dm. (3.14)

Recall that F (∇f) = F ∗(df) and F ∗(ξ + η) ≤ F ∗(ξ) + F ∗(η). From (3.14),

there exist positive constants ci = ci (p, κ̃, κ̃
∗, n) (i = 6, 7, 8) depending only
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on p, κ̃, κ̃∗, n such that∫
B2R

F ∗2
(
d
(
ηf

p
4+

β
2

))
dm ≤ c6

∫
B2R

f
p
2+βF ∗2(dη)dm

+c7(K + δ)β

∫
B2R

η2f
p
2+βdm

−c8β
∫
B2R

η2f
p
2+β+1dm. (3.15)

The following Sobolev inequality is necessary because of the need for Moser’s

iteration in the proof of Theorem 1.1.

Lemma 3.2. ( [3]) Let (M,F,m) be a forward complete Finsler manifold with

finite reversibility Λ. Assume that Ric∞ ≥ K and S ≥ −δ for some K ∈ R
and δ > 0. Then, there exist constant ν > 2 and positive constants c = c(n,Λ)

depending on n and the reversibility Λ of F such that(∫
BR

|u− ū|
2ν

ν−2 dm

) ν−2
ν

≤ ec
(
1+

(
δ+
√

|K|
)
R
)
m(BR)

− 2
νR2

∫
BR

F ∗2(du)dm

(3.16)

for u ∈W 1,2
loc (M) and BR = B+

R (x0) is the forward geodesic ball of radius R(≤
π
2

√
n−1
K if K > 0) for any x0 ∈M , where ū := 1

m(BR)

∫
BR

u dm. Consequently,(∫
BR

|u|
2ν

ν−2 dm

) ν−2
ν

≤ ec
(
1+

(
δ+
√

|K|
)
R
)
m(BR)

− 2
νR2

∫
BR

(
F ∗2(du) +R−2u2

)
dm.

(3.17)

Next, let τ := ν
ν−2 . Taking u = ηf

p
4+

β
2 in (3.17) and using (3.15), one

obtains (∫
B2R

η2τfτ(
p
2+β)dm

) 1
τ

≤ ec(1+(
√
K+δ)R)m (B2R)

− 2
ν ×{

c6R
2

∫
B2R

f
p
2+βF ∗2(dη)dm− c8βR2

∫
B2R

η2f
p
2+β+1dm

+max {c7, 1}β
[
1 + (

√
K + δ)R

]2 ∫
B2R

η2f
p
2+βdm

}
. (3.18)

Here, in the last row of (3.18), we have used the fact that

K + δ ≤
(√

K +
√
δ
)2

≤
(√

K + δ
)2

because δ ≥ 1 and K ≥ 0.

On the other hand, the following lemma is also indispensable to prove our

result. One can follow the same argument of Lemma 4.1 in C. Xia [12] by

setting β0 = c9

(
1 + (

√
K + δ)R

)
and β1 = (β0 +

p
2 )τ to prove the following

lemma.
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Lemma 3.3. There exits a positive constant c = c (p, κ, κ∗, n) such that for

β0 = c9

(
1 + (

√
K + δ)R

)
and β1 = τ

(
p
2 + β0

)
, we have f ∈ Lβ1

(
B 3

2R

)
with

∥f∥
Lβ1

(
B 3

2
R

) ≤ c(1 + (
√
K + δ)R)2

R2
m (B2R)

1
β1 ,

where c9 := max {κ̃/ (c2κ̃∗) , c5n/κ̃∗} ≥ 1.

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. We will start from (3.18) and use the standard Moser

iteration to prove Theorem 1.1. Let Rk = R+ R
2k

and ηk ∈ C∞
0 (BRk

) satisfying

0 ≤ ηk ≤ 1, ηk ≡ 1 ∈ BRk+1
, F ∗(x, dηk) ≤ c̃

2k

R
.

Let β0, β1 be the numbers in Lemma 3.3 and βk+1 = τβk for k ≥ 1. one can

deduce from (3.18) with β + p
2 = βk and η = ηk that

∥f∥Lβk+1(BRk+1
) ≤ (c11e

c10β0)
1
βk m(B2R)

− 2
νβk

(
4k + β2

0βk
) 1

βk ∥f∥Lβk (BRk
)

= (c11e
c10β0)

1
βk m(B2R)

− 2
νβk

(
4k + β2

0τ
k−1β1

) 1
βk ∥f∥Lβk (BRk

).

Note that βk = τk−1β1 , τ = ν
ν−2 , then

∑
k

1
βk

= ν
2β1

, and then

lim
k→∞

(
k

βk

) 1
k

= lim
k→∞

1

β1
1
k τ

k−1
k

=
1

τ
= 1− 2

ν
< 1.

Thus
∑
k
k
βk

converges. By using Lemma 3.3, we get

∥f∥L∞(BR) ≤ c12(c11e
c10β0)

∑
k

1
βk m(B2R)

− 2
ν

∑
k

1
βk (β3

0)
∑

k
1
βk ∥f∥Lβ1 (BR1

)

≤ C
(1 + (

√
K + δ)R)2

R2
,

which implies that

∥F (x,∇ log u)∥L∞(BR) ≤ C
(1 + (

√
K + δ)R)

R
.

For F (x,∇(− log u)), the same argument works. Thus we finish the proof of

Theorem 1.1. □
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