On special class of R-quadratic Finsler metrics

Document Type : Original Article

Author

Department of Mathematics, Faculty of Science, University of Qom, Qom. Iran

Abstract

In this paper a special class of R-quadratic generalized (α, β)-metrics are considered. Some properties of this class are investigated. In special case, the Riemann curvature of this metrics is calculated. Moreover, it is proved that, in this class of metrics, there is not any (non-Riemannian) R-quadratic metrics of non-zero scalar curvature.

Keywords


  • 1. P. L. Antonelli, R. S. Ingarden and M. Mastumoto, The theory of sprays and Finsler
    spaces with application in physics and biology, Kluwer Academic Publishers, 1993.
  • 2. S. B´acs´o and M. Matsumoto, Randers spaces with the h-curvature tensor H dependent
    on position alone, Publ. Math. Debrecen, 57 (2000), 185-192.
  • 3. S. B´acs´o, X. Cheng and Z. Shen, Curvature properties of (α, β)-metrics, In ”Finsler Geometry, Sapporo 2005-In Memory of Makoto Matsumoto”, ed. S. Sabau and H. Shimada,
    Advanced Studies in Pure Mathematics 48, Mathematical Society of Japan, (2007), 73-
    110.
  • 4. S.S. Chern and Z. Shen, Riemann-Finsler Geometry, World Scientific Publishers, 2005.
  • 5. P. Finsler, Uber Kurven und Fl¨achen in allgemeinen R¨aumen ¨ , Ph.D. thesis, GeorgAugust Universit¨at zu G¨ottingen, 1918.
  • 6. B. Najafi, B. Bidabad and A. Tayebi, On R-quadratic Finsler metrics, Iranian Journal
    of Science and Technology A, 31 (A4) (2007), 439-443.
  • 7. G. Randers, On an asymmetric in the four-space of general relativily, Phys. Rev., 59
    (1941), 195-199.
  • 8. B. Riemann, Uber die Hypothesen, welche der Geometrie zu Grunde liegen ¨ , Abhandlungen der Kniglichen Gesellschaft der Wissenschaften zu Guttingen, 13 (1868), 133-152.
  • 9. Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, 2, 2001.
  • 10. Z. Shen, On R-quadratic Finsler spaces, Publication Mathematicae Debrecen, 58 (2001),
    263-274.
  • 11. Z. Shen, On some non-Riemannian quantities in Finsler geometry, Canadian Mathematical Bulletin, 56 (2013), 184193.
  • 12. A. Tayebi and H. Sadeghi, On generalized Douglas-Weyl (α, β)-metrics, Acta Mathematica Sinica-English Series, 31 (2015), 1611-1620.
  • 13. B. Tiwari, R. Gangopadhyay and G. K. Prajapati, On general (α, β)-metrics with some
    curvature properties, Khayyam Journal of Mathematics. 5(2) (2019), 30-39.
  • 14. C. Yu and H. Zhu, On a new class of Finsler metrics, Differ. Geom. Appl. 29 (2011),
    244-254.
  • 15. Q. Xia, On a Class of Finsler Metrics of Scalar Flag Curvature, Results in Mathematics.
    71 (2017), 483-507.
  • 16. L. Zhou, Spherically symmetric Finsler metrics in Rn, Publ. Math. Debrecen. 80 (2012),
    67-77.