On Birecurrent for Some Tensors in Various Finsler Spaces

Document Type : Original Article

Authors

1 Department of Mathematics, Abyan University, Abyan, Yemen.

2 Department of Mathematics, Taiz University, Taiz P.O. Box 6803, Yemen

3 Department of Mathematics, Pratishthan Mahavidyalaya, Paithan, India.

4 Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.

5 Department of Mathematics, Hamedan Branch, Islamic Azad University,Hamedan, Iran

6 Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran

Abstract

The BC− recurrent Finsler space introduced by Alaa et al. [1]. Now in this paper, we introduce and extend BC− birecurrent Finsler space by using some properties of different spaces. We study the relationship between Cartan’s second curvature tensor Pijkh and (h)hv torsion tensor Cijk in sense of Berwald. Additionally, the necessary and sufficient condition for some tensors which satisfy birecurrence property will be discuss in different spaces. Four theorems have been established and proved.

Keywords


  • 1. A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, On B−covariant derivative of first
    order for some tensors in different spaces, J. Math. Analysis. Model. 2(2) (2021), 30-37.
  • 2. A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, Special types of generalized
    BP −recurrent spaces, J. Computer. Math. Sci. 10(5) (2019), 972-979.
  • 3. A. A. Abdallah, A. A. Navlekar and K. P. Ghadle, On P∗− and P −reducible of Cartan’s
    second curvature tensor, J. Appl. Sci. computation. 6(11) (2019), 13-24.
  • 4. A. A. Abdallah, A. A. Navlekar, K. P. Ghadle and A. A. Hamoud, Decomposition for
    Cartan’s second curvature tensor of different order in Finsler spaces, Nonlinear. Functional. Analysis. Appl. 27(2) (2022), 433-448.
  • 5. A. A. Abdallah, A. A. Hamoud, A. A. Navlekar and K. P. Ghadle, On special spaces of
    H(hv)-torsion tensor cjkh in generalized recurrent finsler space, Bull. Pure & Applied.
    Sci. Math. Stat. 41(1) (2022), 74-80.
  • 6. A. A. Saleem, On certain generalized birecurrent and trirecurrent Finsler spaces, M.Sc.
    Thesis, University of Aden, Yemen, 201
    44 Alaa et al.
  • 7. A. A. Saleem, and A. A. Abdallah, Study On Uh− birecurrent Finsler spaces, Int. J.
    Adv. Res. Sci. Commun. Tech. 2(3) (2022), 28-39.
  • 8. A. M. Hanballa, On covariant differentiation of curvature tensors in Finsler spaces,
    University of Aden, (Aden), (Yemen), 2016.
  • 9. A. M. Otman, On covariant differentiation for curvature tensor of third order in the
    sense of Berwald, M.sc. Thesis, University of Aden, Yemen, 2018.
  • 10. F. Y. Qasem and A. M. Hanballa, On study Kh− generalized birecurrent Finsler space,
    Int. J. Sci. Basic. Appl. Res. 25(3), (2016), 208-216.
  • 11. H. Izumi, On P∗−Finsler space of scalar curvature, Tensor N.S., 38(1982), 220-222.
  • 12. H. Rund, The differential geometry of Finsler spaces, Springer-Verlag, Berlin G¨ottingen,
    (1959); 2nd Edit. (in Russian), Nauka, (Moscow), 1981.
  • 13. K. C. Sarangi and A. Goswami, On C− recurrent Finsler space, J. Int. Acad. Phys. Sci.
    10 (2006), 17-24.
  • 14. M. A. Alqufail, F. Y. Qasem and A. A. Muhib, On study Kh−birecurrent Finsler spaces,
    Sci. J. Fac. Edu. Thamar. 2015.
  • 15. M. Dahl, An brief introduction to Finsler geometry, Springer, 2006.
  • 16. M. Gheorghe, The indicatrix in Finsler geometry, Anal. Sti. Ale. Uuiv. Mat. Tomul LIII,
    (2007), 163-180.
  • 17. M. Matsumoto, On h−isotropic and Ch−recurrent Finsler, J. Math. Kyoto Univ., 11
    (1971), 1-9.
  • 18. M. Matsumoto, On Finsler spaces with curvature tensor of some special forms, Tensor
    N.S., 22 (1971), 201-204.
  • 19. P. K. Dwivedi, P − reducible Finsler spaces and applications, Int. J. Math. Analysis, 5(5)
    (2011), 223-229.
  • 20. P. N. Pandey and R. Verma, Ch−birecurrent Finsler spaces, J. Int. Acad. Phy. Sci.
    2(1998), 43-50.
  • 21. P. N. Pandy and S. Dikshit, On P∗− and P −reducible Finsler spaces of recurrent curvature, J. Int. Acad. Phy. Sci. 2 (1998), 11-17.
  • 22. P. S. Saxena and P. Swaroop, A study of P∗−reducible Finsler space with Douglas tensor,
    J. Int. Acad. Phy. Sci. 17(3) (2013), 277-285.
  • 23. S. Dikshit, Certain types of recurrences in Finsler spaces, D. phil. Thesis, University of
    Allahabad, (Allahabad), (India), 1992.
  • 24. S. I. Ohta, Comparison Finsler geometry, Springer International Publishing, 2021.
  • 25. S. M. Zamanzadeh, B. Najafi and M. Toomanian, On generalized P −reducible Finsler
    manifolds, Open. Math. 16(2018), 718-723.