Shen's L-Process on the Chern Connection‎

Document Type : Original Article

Authors

1 Department of Pure Mathematics. Faculty of Mathematical Sciences. University of Tabriz. Tabriz. Iran.

2 Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.

Abstract

‎The notion of Shen's process was introduced by Tayebi-Najafi in order to construct the Shen connection from the Berwald connection‎. ‎In this paper‎, ‎we study the connection obtained by Shen's L-process on the Chern connection‎. ‎Let (M‎, ‎F) be a Finsler manifold‎. ‎Suppose that D is the linear torsion-free connection obtained by Shen's L-process on Chern's connection‎. ‎First‎, ‎we show the existence and uniqueness of D‎. ‎Then‎, ‎we prove that their hv-curvature coincides if and only if F is a Riemannian ‎metric

Keywords


  • 1. H. Akbar-Zadeh, Les espaces de Finsler et certaines de leurs g´en´eralisations. (French)
    Ann. Sci. Ecole Norm. Sup.3 ´ 80(1963), 1-79.
  • 2. L. Berwald, Untersuchung der Kr¨ummung allgemeiner metrischer R¨aume auf Grund
    des in ihnen herrschenden Parallelismus. Math. Z. 25(1926), 40-73.
  • 3. B. Bidabad and A. Tayebi, Properties of generalized Berwald connections. Bull. Iran.
    Math. Society. 35(2009), 237-254.
  • 4. B. Bidabad and A. Tayebi, A classification of some Finsler connections. Publ. Math.
    Debrecen. 71(2007), 253-260.
  • 5. E. Cartan, Les espaces de Finsler, Hermann, Paris, 1934.
  • 6. S. S. Chern, On the Euclidean connections in a Finsler space. Proc. National Acad. Soc.
    29(1943), 33-37.
  • 7. M. Faghfouri and N. Jazer, Shen’s L-process on Berwald connection. Ukr. Math. J.
    72(2021), 1314-1330.
  • 8. L. Kozma and L. Tam´assy, Finsler geometry without line elements faced to applications.
    Report on Math. Phys. 51(2003), 233-250.
  • 9. M. Matsumoto, Finsler connections with many torsions. Tensor, N.S., 71(1966), 217-226.
  • 10. Z. Muzsnay and P. T. Nagy, Invariant Shen connections and geodesic orbit spaces. Periodica Math Hungarica. 51(2005), 37-51.
  • 11. B. Najafi, A. Tayebi, On a Family of Einstein Randers Metric. Int. J. Geom. Meth. Mod.
    Phys. 8(2011), 1021-1029.
  • 12. Z. Shen, On a connection in Finsler Geometry. Houston J. Math. 20(1994),591-602.
  • 13. A. Tayebi, On the class of generalized Landsbeg manifolds. Periodica Math Hungarica,
    72(2016), 29-36.
  • 14. A. Tayebi and B. Barzagari, Generalized Berwald spaces with (α, β)-metrics. Indagationes Mathematicae, 27(2016), 670-683.
  • 15. A. Tayebi, E. Azizpour and E. Esrafilian, On a family of connections in Finsler geometry.
    Publ. Math. Debrecen. 72(2008), 1-15.
  • 16. A. Tayebi, E. Peyghan and B. Najafi, On semi-C-reducibility of (α, β)-metrics. Int. J.
    Geom. Meth. Modern. Phys, 9(2012), 1250038.
  • 17. A. Tayebi and B. Najafi, On isotropic Berwald metrics. Ann. Polon. Math. 103(2012),
    109-121.
  • 18. A. Tayebi and B. Najafi, Shen’s processes on Finslerian connections. Bull. Iran. Math.
    Society. 36(2010), 57-73.
  • 19. A. Tayebi and A. Nankali, On generalized Einstein Randers metrics. Int. J. Geom. Meth.
    Modern. Phys. 12(2015), 1550105 (14 pages).
  • 20. A. Tayebi and H. Sadeghi, On Cartan torsion of Finsler metrics. Publ. Math. Debrecen,
    82(2013), 461-471.
  • 21. A. Tayebi and H. Sadeghi, Generalized P-reducible (α, β)-metrics with vanishing Scurvature. Ann. Polon. Math. 114(2015), 67-79.
  • 22. A. Tayebi and H. Sadeghi,On generalized Douglas-Weyl (α, β)-metrics. Acta Mathematica Sinica, English Series. 31(2015), 1611-1620.
  • 23. A. Tayebi and T. Tabatabaeifar, Dougals-Randers manifolds with vanishing stretch tensor. Publ. Math. Debrecen. 86(2015), 423-432.